

European Research Council Established by the European Commission

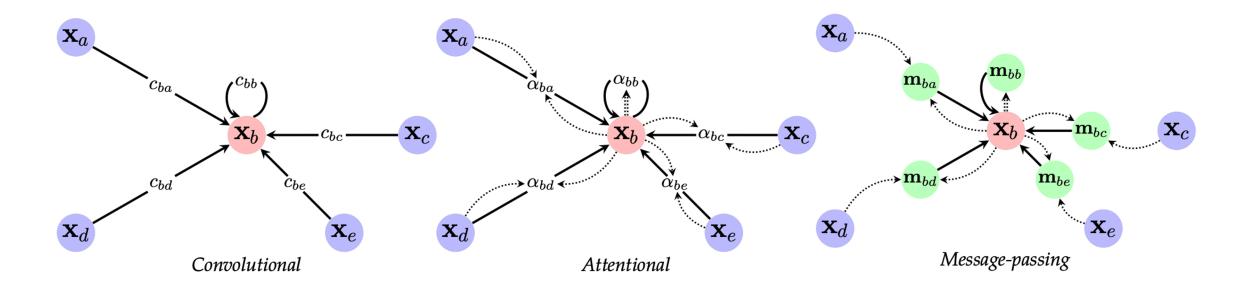
DRew: Dynamically Rewired Message Passing with Delay

Benjamin Gutteridge, Xiaowen Dong, Michael Bronstein, Francesco Di Giovanni

Overview

- Background: MPNNs and long-range interactions
- Contributions:
 - Dynamically Rewired Message Passing
 - DRew + **Delay**
- Why DRew works
- Experimental results

Message-Passing Neural Networks



- Message passing: aggregation and update steps
- Occurs over 1-hop neighbourhood
- Several variations, but most graph neural networks are MPNNs

Figure credit: Bronstein et al 2021. Geometric Deep Learning Grids, Groups, Graphs, Geodesics, and Gauges

Challenges with MPNNs

Long-range dependency

• When the output of a MPNN depends on distant nodes interacting with each other

Necessitates more MPNNs layers, leading to:

- Oversmoothing
 - increasing network depth leading to homogeneous node representations and thus poor performance
- Oversquashing
 - "Lack of sensitivity of the output of an MPNN at node p to the input features at an k-hop-distant node s"

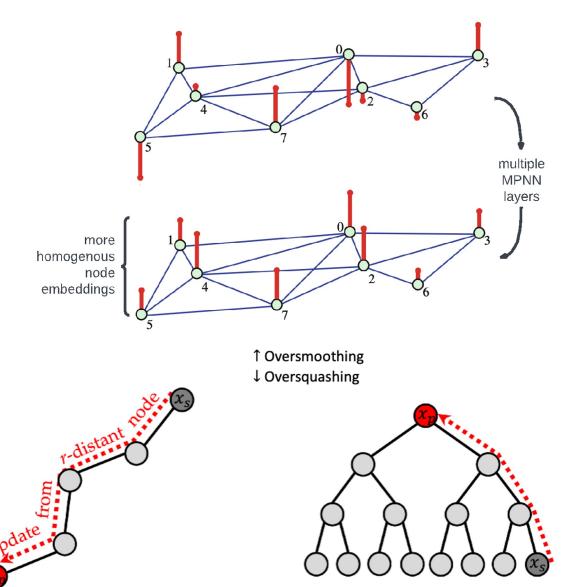


Figure credits: Topping et al 2022. Over-squashing, Bottlenecks, and Graph Ricci curvature (bottom). Stanković, Ljubiša, and Ervin Sejdić, eds. 2019. Vertex-frequency analysis of graph signals (top).

Long-range interactions

- Various domains use global graph information or rely on distant node interactions
- Many large graphs likely exhibit a degree of long-range dependence
- Several recent works looking at long-range interactions, as well as a set of benchmark datasets
 - Wu, Zhanghao, et al. "Representing long-range context for graph neural networks with global attention." (NIPS 2021)
 - Dwivedi, Vijay Prakash, et al. "Long range graph benchmark." (NIPS 2022)
 - Di Giovanni, Francesco, et al. "On over-squashing in message passing neural networks: The impact of width, depth, and topology." (ICML 2023)
 - Ma, Liheng, et al. "Graph Inductive Biases in Transformers without Message Passing." (ICML 2023).

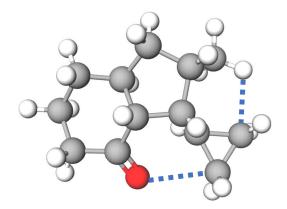
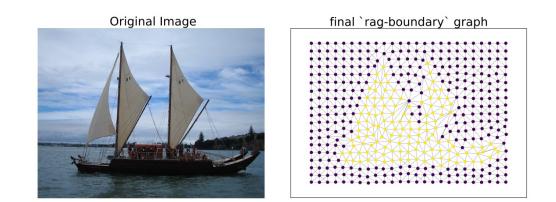


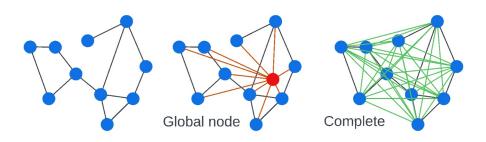
Figure 1: Molecule with LRIs (dotted lines showing 3D atomic contact) that are not trivially captured by the graph structure.



Graph Rewiring

Static graph rewiring

- Graph topology itself is altered to make it 'friendlier'
- E.g.
 - Dropping or adding nodes or edges (DropEdge, DropGNN)
 - Global nodes/fully adjacent layers
 - Rewiring according to a spectral/connectivity measure (SDRF, DIGL)
 - Positional encoding

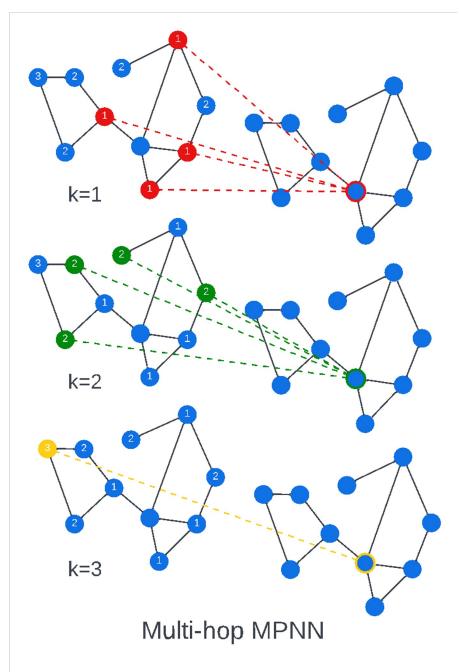


Computational graph rewiring

- Rather than changing input graph itself, you change the way you *allow information to propagate* during message passing
- E.g.
 - Multi-hop MPNNs (Shortest Path Network, N-GCN, MixHop, k-hop GNN)
 - Graph Transformers
- 🖸 This is our focus

Proposal

- Transformers throw away the graph topology by making graphs fully-connected
- Multi-hop MPNNs are similar:
 - They make the computational graph denser
 - They lose the notion of information flow through the graph, i.e. that nodes that are closer should interact earlier
- How can we exploit these inductive biases?



Intuition: Dynamic Rewiring

"...aggregating information over distant nodes that goes beyond the limitations of classical MPNNs, but respects the inductive bias provided by the graph: **nodes that are closer should interact earlier in the architecture.**"

"We argue that it is important not simply *how* two node states interact with each other, but also **when that happens**."

Background: MPNNs

- MPNN:
 - 1-hop local aggregation
 - update

$$a_i^{(\ell)} = \operatorname{AGG}^{(\ell)} \left(\left\{ h_j^{(\ell)} : j \in \mathcal{N}_1(i) \right\} \right),$$
$$h_i^{(\ell+1)} = \operatorname{UP}^{(\ell)} \left(h_i^{(\ell)}, a_i^{(\ell)} \right),$$

k-hop neighbourhood: 1-hop neighbourhood

Shortest path distance

$$\mathcal{N}_k(i) := \{ j \in V : d_G(i,j) = k \}.$$

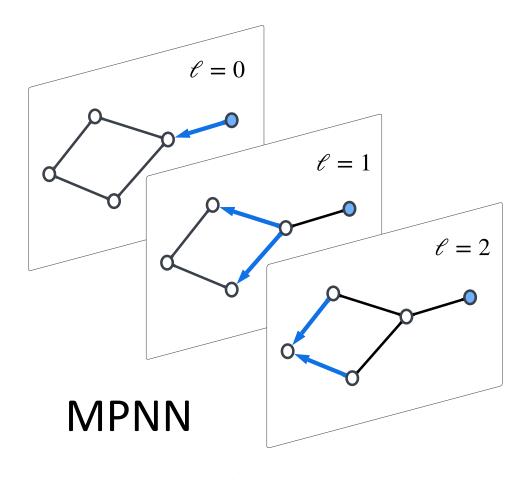
Dynamically Rewired MPNN

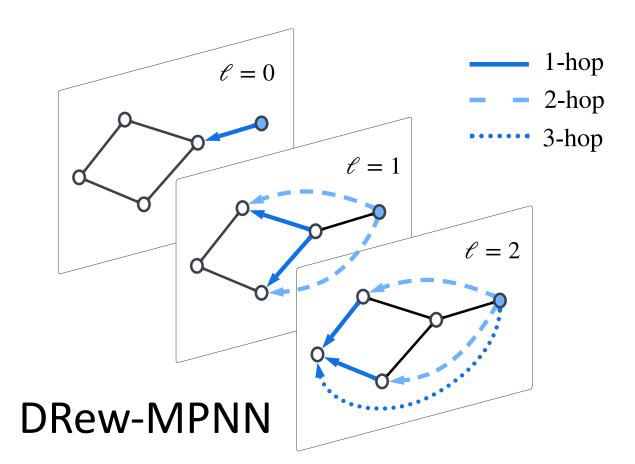
 (ρ)

 \mathbf{N}

Reduces to vanilla MPNN if $AGG_k = I$ for k > 1

 $(\ell + 1)$ th hop only aggregated from layer ℓ





 $a_i^{(\ell)} = \operatorname{AGG}^{(\ell)} \left(\{ h_j^{(\ell)} : j \in \mathcal{N}_1(i) \} \right),$ $h_i^{(\ell+1)} = \operatorname{UP}^{(\ell)} \left(h_i^{(\ell)}, a_i^{(\ell)} \right),$

$$a_{i,k}^{(\ell)} = \mathrm{AGG}_{k}^{(\ell)} \left(\{ h_{j}^{(\ell)} : j \in \mathcal{N}_{k}(i) \} \right), 1 \le k \le \ell + 1$$
$$h_{i}^{(\ell+1)} = \mathrm{UP}_{k}^{(\ell)} \left(h_{i}^{(\ell)}, a_{i,1}^{(\ell)}, \dots, a_{i,\ell+1}^{(\ell)} \right).$$
(5)

Introducing delay

Currently:

- MPNNs: nodes *i*, *j* interact with a constant delay given by their distance – leading to the same lag of information
- DRew: nodes interact only from a certain depth of the architecture, but without any delay

What if we consider the state of *j* as it was when the information 'left' to flow towards *i*?

Introducing delay: vDRew

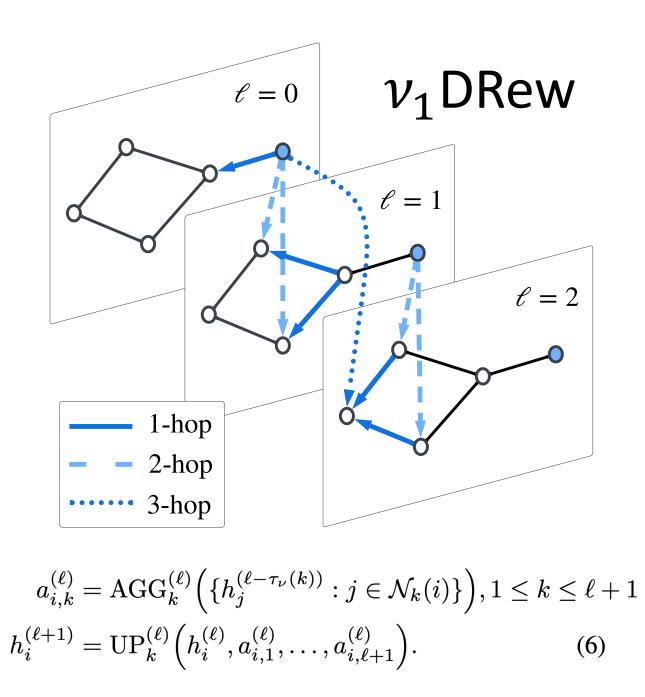
• What if we consider the state of *j* as it was when the information 'left' to flow towards *i*?

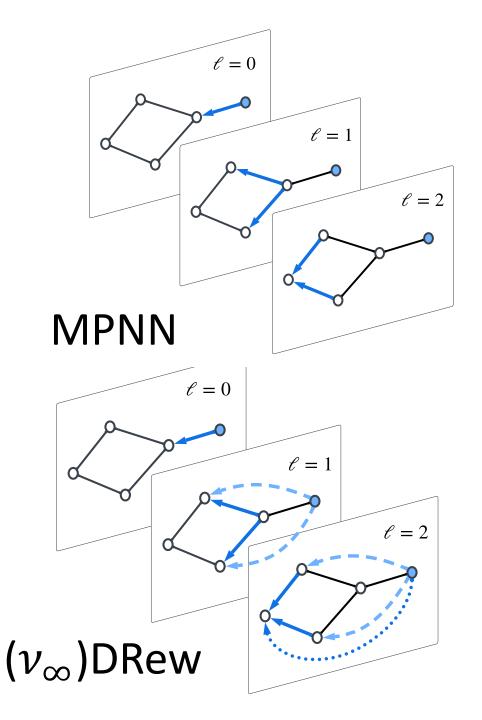
• Delay:
$$au_
u(k) = \max(0,k-
u)$$

- v: 'rate' hyperparameter
- (i.e. the hop radius below which node communication is instantaneous)

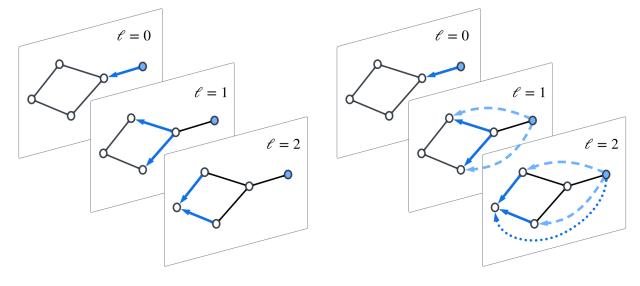
$$a_{i,k}^{(\ell)} = \mathrm{AGG}_{k}^{(\ell)} \left(\{ h_{j}^{(\ell - \tau_{\nu}(k))} : j \in \mathcal{N}_{k}(i) \} \right), 1 \le k \le \ell + 1$$

$$h_{i}^{(\ell+1)} = \mathrm{UP}_{k}^{(\ell)} \left(h_{i}^{(\ell)}, a_{i,1}^{(\ell)}, \dots, a_{i,\ell+1}^{(\ell)} \right).$$
(6)





The graph-rewiring perspective: *v*DRew as distance-aware skip connections

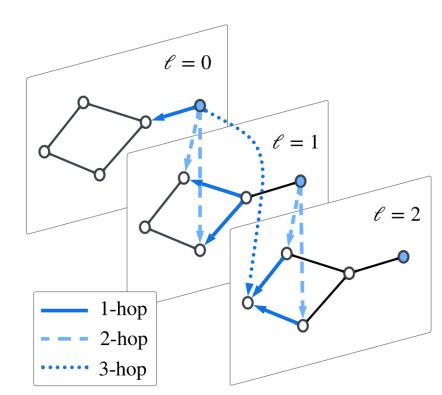


(a) Classical MPNN

(b) DRew

 1-hop, horizontal only

- Multi-hop, horizontal only
- Computational graph gradually filled



(c) $\nu DRew$

- Multi-hop, horizontal AND vertical skip connections, through distance and time (layer)
- Skip connections between *different* nodes, dependent on geometric distance

DRew instantiations of common MPNNs

• GCN
$$h_i^{(\ell+1)} = h_i^{(\ell)} + \sigma \left(\sum_{k=1}^{\ell+1} \sum_{j \in \mathcal{N}_k(i)} \mathbf{W}_k^{(\ell)} \gamma_{ij}^k h_j^{(\ell-\tau_\nu(k))} \right) \qquad \gamma_{ij}^k = \begin{cases} \frac{1}{\sqrt{d_i d_j}}, & \text{if } d_G(i,j) = k \\ 0, & \text{otherwise.} \end{cases}$$

$$h_{i}^{(\ell+1)} = (1+\epsilon) \mathrm{MLP}_{s}^{(\ell)}(h_{i}^{(\ell)}) + \sum_{k=1}^{\ell+1} \sum_{j \in \mathcal{N}_{k}(i)} \mathrm{MLP}_{k}^{(\ell)}(h_{j}^{(\ell-\tau_{\nu}(k))}),$$

• GatedGCN
$$h_{i}^{(\ell+1)} = \mathbf{W}_{1}^{(\ell)} h_{i}^{(\ell)} + \sum_{k=1}^{\ell+1} \sum_{j \in \mathcal{N}_{k}(i)} \eta_{i,j}^{k} \odot \mathbf{W}_{2}^{(\ell)} h_{j}^{(\ell-\tau_{\nu}(k))}$$
$$\eta_{i,j}^{k} = \frac{\hat{\eta}_{i,j}^{k}}{\sum_{j \in \mathcal{N}_{k}(i)} (\hat{\eta}_{i,j}^{k}) + \epsilon},$$
$$\hat{\eta}_{i,j}^{k} = \sigma \left(\mathbf{W}_{3}^{(\ell)} h_{i}^{(\ell)} + \mathbf{W}_{4}^{(\ell)} h_{j}^{(\ell-\tau_{\nu}(k))} \right)$$

Why does ν DRew help with over-squashing?

- Jacobian as a measure of sensitivity between nodes (Topping 2022)
- For vanilla MPNN, same adjacency A used in each layer (i.e. 1-hop aggregation) with which we can bound the Jacobian by power A^r for nodes i, j at hop distance r
- Due to skip connections, v_1 DRew-GCN's sensitivity bound is different see below
- Nodes at distance r can now interact via products of message-passing matrices containing fewer than r factors
- Oversquashing arises due to the entries i, j of normalised A^r decaying to zero exponentially with r
- Powers of Γ^k ($\gamma_{i,j} \in \Gamma$) are different unlike A, therefore oversquashing is mitigated

$$\left. \frac{\partial h_i^{(r)}}{\partial h_j^{(0)}} \right| \le C \Big(\sum_{k_1 + \dots + k_\ell = r} \Big(\prod_{k_1, \dots, k_\ell} (\gamma^k)_{ij} \Big) \Big)$$

$$\left|\frac{\partial h_i^{(r)}}{\partial h_j^{(0)}}\right| \le c \, (\mathbf{A}^r)_{ij},$$

Why does ν DRew help with over-smoothing?

- Over-smoothing occurs because by the time information from node *i* reaches distant node *j*, it has been mixed many times with neighbours
- Skip connections with delay allow *i* to 'see' *j* before too much local smoothing has occurred
- Choice of delay parameter ν can be considered amount of local smoothing
 - High v: more local smoothing
 - Low v: less

Experiments

- Long-range graph benchmark
 - Chemistry and computer vision
 - Graph-, node- and edge-level tasks
- QM9 (see paper)
 - Chemistry, multi-task regression
- RingTransfer
 - Synthetic 'true' long-range task
- Peptides-func ablation
 - Demonstrate impact of delay parameter ν for for task from LRGB

Performance on real-world datasets

Table 1. Classical MPNN benchmarks vs their DRew variants (without positional encoding) across four LRGB tasks: (from left to right) graph classification, graph regression, link prediction and node classification. All results are for the given metric on test data.

Model	Peptides-func $AP\uparrow$	Peptides-struct MAE↓	PCQM-Contact MRR ↑	PascalVOC-SP $F1\uparrow$
GCN	0.5930±0.0023	0.3496±0.0013	0.3234±0.0006	0.1268±0.0060
+DRew	0.6996±0.0076	0.2781±0.0028	0.3444±0.0017	0.1848±0.0107
GINE	0.5498±0.0079	0.3547±0.0045	0.3180±0.0027	0.1265±0.0076
+DRew	0.6940±0.0074	0.2882±0.0025	0.3300±0.0007	0.2719±0.0043
GatedGCN	0.5864±0.0077	0.3420±0.0013	0.3218±0.0011	0.2873±0.0219
+DRew	0.6733±0.0094	0.2699±0.0018	0.3293±0.0005	0.3214±0.0021

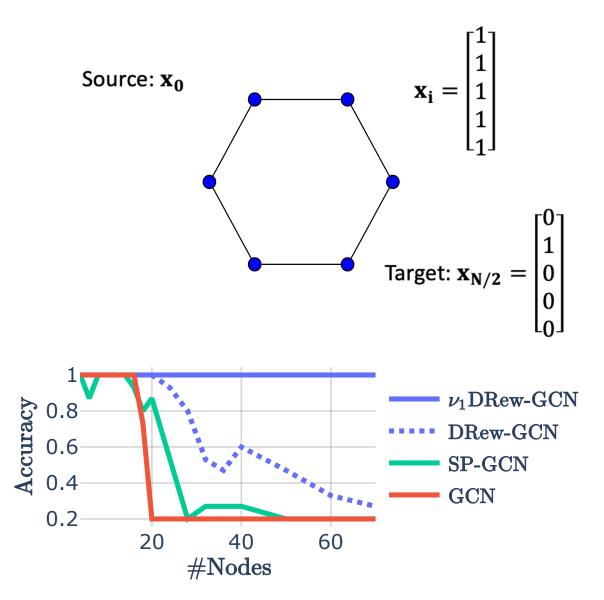
- Tasks from long-range graph benchmark; 4 different tasks
- DRew models consistently beat their non-DRew counterparts
- Fixed parameter budget of 500k
- Better performance even though *no edge features used in DRew*
 - for simplicity; we would expect use of edge features to further improve results

Table 2. Performance of various classical, multi-hop and static rewiring MPNN and graph Transformer benchmarks against DRew-MPNNs across four LRGB tasks. The first-, second- and third-best results for each task are colour-coded; models whose performance are within a standard deviation of one another are considered equal.

	Model	Peptides-func AP↑	Peptides-struct $MAE\downarrow$	PCQM-Contact MRR ↑	PascalVOC-SP $F1\uparrow$
Static rewiring benchmark Multi-hop MPNN benchmark	GCN GINE GatedGCN GatedGCN+PE	0.5930 ± 0.0023 0.5498 ± 0.0079 0.5864 ± 0.0077 0.6069 ± 0.0035	0.3496±0.0013 0.3547±0.0045 0.3420±0.0013 0.3357±0.0006	0.3234±0.0006 0.3180±0.0027 0.3218±0.0011 0.3242±0.0008	$\begin{array}{c} 0.1268 \pm 0.0060 \\ 0.1265 \pm 0.0076 \\ 0.2873 \pm 0.0219 \\ 0.2860 \pm 0.0085 \end{array}$
	DIGL+MPNN DIGL+MPNN+LapPE MixHop-GCN MixHop-GCN+LapPE	0.6469 ± 0.0019 0.6830 ± 0.0026 0.6592 ± 0.0036 0.6843 ± 0.0049	0.3173±0.0007 0.2616±0.0018 0.2921±0.0023 0.2614±0.0023	0.1656 ± 0.0029 0.1707 ± 0.0021 0.3183 ± 0.0009 0.3250 ± 0.0010	0.2824±0.0039 0.2921±0.0038 0.2506±0.0133 0.2218±0.0174
	Transformer+LapPE SAN+LapPE GraphGPS+LapPE	$\begin{array}{c} 0.6326 \pm 0.0126 \\ 0.6384 \pm 0.0121 \\ 0.6535 \pm 0.0041 \end{array}$	0.2529±0.0016 0.2683±0.0043 0.2500±0.0005	0.3174±0.0020 0.3350±0.0003 0.3337±0.0006	0.2694±0.0098 0.3230±0.0039 0.3748±0.0109
DRew mostly beating or on-par with <mark>Transformers</mark>	DRew-GCN DRew-GCN+LapPE DRew-GIN DRew-GIN+LapPE DRew-GatedGCN DRew-GatedGCN+LapPE	0.6996±0.0076 0.7150±0.0044 0.6940±0.0074 0.7126±0.0045 0.6733±0.0094 0.6977±0.0026	0.2781±0.0028 0.2536±0.0015 0.2799±0.0016 0.2606±0.0014 0.2699±0.0018 0.2539±0.0007	0.3444±0.0017 0.3442±0.0006 0.3300±0.0007 0.3403±0.0035 0.3293±0.0005 0.3324±0.0014	$\begin{array}{c} 0.1848 \pm 0.0107 \\ 0.1851 \pm 0.0092 \\ 0.2719 \pm 0.0043 \\ 0.2692 \pm 0.0059 \\ \textbf{0.3214 \pm 0.0021} \\ \textbf{0.3314 \pm 0.0024} \end{array}$

RingTransfer

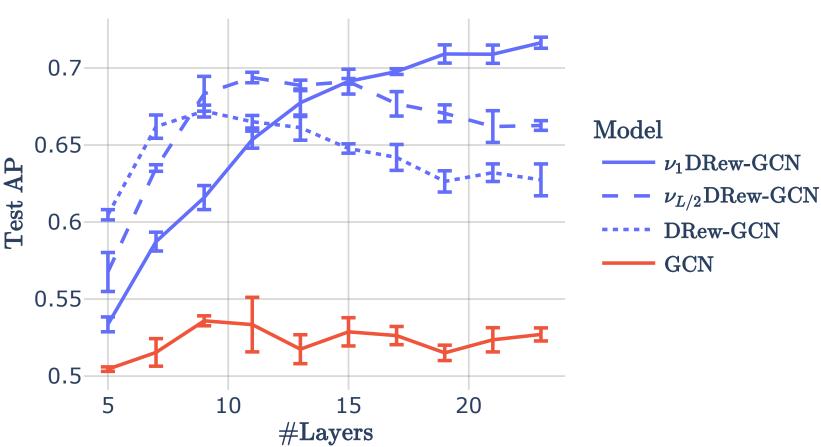
- Synthetic task for testing LR dependence
- N rings, length n
- Target node must interact with source node n/2 hops away
- Fixed n/2 layers (needed for interaction)
- C = 5 classes
- MPNN/multi-hop MPNN < Drew < Drew + Delay



• MPNN << SP-GCN (multi-hop MPNN) << DRew << DRew + Delay

Fixed d ablation on peptides-func

- Looking at effect of delay hyperparam
- Param constraint lifted
- Delay reduces impact of oversmoothing
- With full delay, performance *improves* with more layers. Very unusual for MPNNs

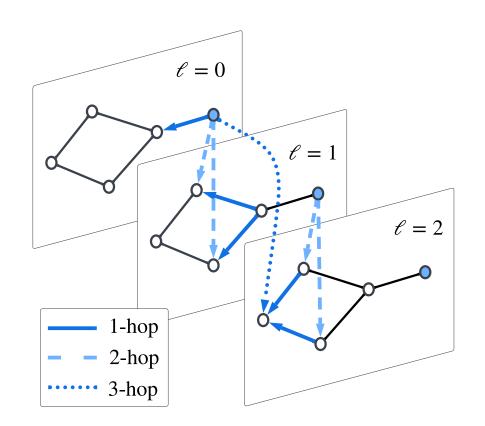


Conclusion

- Two contributions: Dynamically Rewired message passing and Delay
- Framework applicable to any MPNN
- Reduces over-smoothing and over-squashing
- Improves on vanilla/multi-hop MPNNs, static rewiring approaches and Transformers for synthetic and real-world long-range tasks

Future Work

- Investigating expressive power
- Reduce parameter scaling (good progress already on this front!)
- Alternate distance measures



$\nu_1 \mathsf{DRew}$

$$a_{i,k}^{(\ell)} = \mathrm{AGG}_{k}^{(\ell)} \Big(\{ h_{j}^{(\ell-\tau_{\nu}(k))} : j \in \mathcal{N}_{k}(i) \} \Big), 1 \le k \le \ell + 1$$
$$h_{i}^{(\ell+1)} = \mathrm{UP}_{k}^{(\ell)} \Big(h_{i}^{(\ell)}, a_{i,1}^{(\ell)}, \dots, a_{i,\ell+1}^{(\ell)} \Big).$$
(6)

Thanks for

watching!

