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Background

Cross-validation (CV) is a popular tool for assessing and selecting predictive
models.

Leave-one-out CV or n-fold CV

󰂏 Has high accuracy for out-of-sample error estimation
[Arlot and Celisse, 2010].

Computing leave-one-out CV can be expensive as the model needs to be
fitted n times.

Can we find efficient approximations for leave-one-out CV?

Much progress has been made to speed up Leave-one-out CV under the ERM
framework [Beirami et al., 2017, Giordano et al., 2019, Wang et al., 2018, Wilson et al., 2020, Rad and Maleki, 2020,

Stephenson and Broderick, 2020].
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Prediction Error Estimation in ERM via CV

Empirical Risk Minimization:

󰁥θ = arg min
θ∈Rp

F (Z; θ) :=
n󰁛

j=1

ℓ(Zi ; θ) + λπ(θ),

Z = {Zi}ni=1 is the data, ℓ(Zi , θ) is the loss on data Zi with parameter θ.

Leave-one-out CV estimation for the prediction error of 󰁥θ:

CV({󰁥θ−i}ni=1) =
n󰁛

i=1

ℓ(Zi ; 󰁥θ−i ),

where

󰁥θ−i = arg min
θ∈Rp

F (Z−i ; θ) :=
n󰁛

j=1,j ∕=i

ℓ(Zj ; θ) + λπ(θ)

Computing 󰁥θ−i for i = 1, . . . , n can be expensive.

Yuetian Luo (UChicago) June, 2023 3



Prediction Error Estimation in ERM via CV

Empirical Risk Minimization:

󰁥θ = arg min
θ∈Rp

F (Z; θ) :=
n󰁛

j=1

ℓ(Zi ; θ) + λπ(θ),

Z = {Zi}ni=1 is the data, ℓ(Zi , θ) is the loss on data Zi with parameter θ.

Leave-one-out CV estimation for the prediction error of 󰁥θ:

CV({󰁥θ−i}ni=1) =
n󰁛

i=1

ℓ(Zi ; 󰁥θ−i ),

where

󰁥θ−i = arg min
θ∈Rp

F (Z−i ; θ) :=
n󰁛

j=1,j ∕=i

ℓ(Zj ; θ) + λπ(θ)

Computing 󰁥θ−i for i = 1, . . . , n can be expensive.

Yuetian Luo (UChicago) June, 2023 3



Existing Approaches for Approximating 󰁥θ−i

F (·, θ) is twice continuously differentiable in θ:

One Newton-Step (NS) estimator [Beirami et al., 2017]:

󰁨θNS
−i = 󰁥θ −

󰀓
∇2

θF (Z−i ; 󰁥θ)
󰀔−1

∇θF (Z−i ; 󰁥θ),

Infinitesimal jackknife (IJ) estimator [Giordano et al., 2019] :

󰁨θIJ−i =
󰁥θ −

󰀓
∇2

θF (Z; 󰁥θ)
󰀔−1

∇θF (Z−i ; 󰁥θ).

These two methods rely on the assumption 󰁥θ can be exactly obtained.
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Guarantees for Existing Methods and Limitations

This assumption can be restrictive in a couple of scenarios:

large-scale problems with limited computational budget

algorithm has a slow rate of convergence such as SGD

stop early to avoid overfitting

What if 󰁥θ is unknown?

New solution: Iterative Approximate Cross-Validation (IACV).
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General Setup

F (Z; θ) = g(Z; θ) + h(θ),

where g(Z; θ) is twice-differentiable in θ while h(θ) may be nondifferentiable.

Iterative solver:

󰁥θ(t) = argmin
θ

󰀝
1

2αt
󰀂θ − θ′󰀂22 + h(θ)

󰀞
,

where θ′ = 󰁥θ(t−1) − αt∇θg(ZSt ;
󰁥θ(t−1)).

St ⊆ [n]: subset of indices, ZSt := {Zi : i ∈ St}, and αt > 0: learning rate

Examples: GD, proxGD and SGD ...
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Iterative Approximate CV (IACV)

Recall, for i = 1, . . . , n:

󰁥θ(t)−i = argmin
θ

󰀝
1

2αt
󰀂θ − θ′󰀂22 + h(θ)

󰀞
, (1)

where θ′ = 󰁥θ(t−1)
−i − αt∇θg(ZSt ;

󰁥θ(t−1)
−i ).

Goal: generate approximations 󰁨θ(t)−i ≈ 󰁥θ(t)−i , at each iteration t ≥ 1 and for each
i ∈ [n].

(approx the previous iterate) 󰁨θ(t−1)
−i ≈ 󰁥θ(t−1)

−i

(approx the gradient) taylor expansion at 󰁥θ(t−1)

IACV : 󰁨θ(t)−i = argmin
θ

󰀝
1

2αt
󰀂θ − θ′󰀂22 + h(θ)

󰀞
,

where θ′ = 󰁨θ(t−1)
−i − αt

󰀃
∇θg(ZSt\i ;

󰁥θ(t−1)) +∇2
θg(ZSt\i ;

󰁥θ(t−1))[󰁨θ(t−1)
−i − 󰁥θ(t−1)]

󰀄
.
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Advantages and Guarantees

Smaller computation complexity

Guaranteed per-iteration error control

Recover the existing one-step Newton method in the limit

Numerically performs well

Iterative Approximate Cross-Validation

Exhibit Hall 1 https://arxiv.org/abs/2303.02732

Thank you!
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