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Background

@ Cross-validation (CV) is a popular tool for assessing and selecting predictive
models.

@ Leave-one-out CV or n-fold CV

% Has high accuracy for out-of-sample error estimation
[Arlot and Celisse, 2010].

@ Computing leave-one-out CV can be expensive as the model needs to be
fitted n times.

@ Can we find efficient approximations for leave-one-out CV?

Much progress has been made to speed up Leave-one-out CV under the ERM
fra mework [Beirami et al., 2017, Giordano et al., 2019, Wang et al., 2018, Wilson et al., 2020, Rad and Maleki, 2020,

Stephenson and Broderick, 2020].
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Prediction Error Estimation in ERM via CV

@ Empirical Risk Minimization:
0 = arg m|n F(Z;0) ZZ(Z,,@ ) + A (6),
j=1

Z ={Z}_, is the data, £(Z;,0) is the loss on data Z; with parameter 6.
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Prediction Error Estimation in ERM via CV

@ Empirical Risk Minimization:

n

o~

0 = arg min F(20) := ;e(z,-;e)mw(e),

Z ={Z}_, is the data, £(Z;,0) is the loss on data Z; with parameter 6.

@ Leave-one-out CV estimation for the prediction error of 0:

{0—’}1 1 Zé

where
;= :
= arg rgRrL F(z Z 0(Z;;0) + An(0)
J=1j#
Computing 9  for i =1,...,n can be expensive.

Yuetian Luo (UChicago) June, 2023



Existing Approaches for Approximating @\_,-

@ F(-,0) is twice continuously differentiable in 6:
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~ ~\ 1 ~
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Existing Approaches for Approximating 1/9\_,-

@ F(-,0) is twice continuously differentiable in 6:

o One Newton-Step (NS) estimator [Beirami et al., 2017]:

NS
Tk

~ ~\ 1 -~
6 (ng(z_,-; 9)) VoF(Z_;;0).
o Infinitesimal jackknife (1J) estimator [Giordano et al., 2019] :

~ ~ ~\ 1 ~
=0 (V3F(2:0)  VoF(Z::0).

@ These two methods rely on the assumption 9 can be exactly obtained.
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Guarantees for Existing Methods and Limitations

This assumption can be restrictive in a couple of scenarios:

@ large-scale problems with limited computational budget
@ algorithm has a slow rate of convergence such as SGD

@ stop early to avoid overfitting
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Guarantees for Existing Methods and Limitations

This assumption can be restrictive in a couple of scenarios:

@ large-scale problems with limited computational budget
@ algorithm has a slow rate of convergence such as SGD
@ stop early to avoid overfitting

What if § is unknown?

New solution: lterative Approximate Cross-Validation (IACV).
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General Setup

F(2:0) = g(2:0) + h(0),
where g(Z;0) is twice-differentiable in @ while h(6) may be nondifferentiable.

@ lterative solver:
) 1
é\(t) = argmeln {M”g — 0/”% -+ h(G)} s

where 0/ = 8(t=1) — 0, V,g(Zs,; 0t
@ S; C [n]: subset of indices, Zs, := {Z; : i € 5}, and a; > 0: learning rate
@ Examples: GD, proxGD and SGD ...
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lterative Approximate CV (IACV)
Recall, for i=1,...,n:
0 _ o [ e
0) = argmin { 10— 013 + 09) ) &

where ¢/ = g(_t.fl) —a;Vog(Zs,; Z)\(t-fl)).

! —1
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lterative Approximate CV (IACV)

Recall, for i=1,...,n:
a0 _ oL e
0) = argmin { 10— 013 + 09) )
where ¢/ = a(_tfl) —a;Vog(Zs,; g(_tfl))
Goal: generate approximations é(_t,) & g(f? at each iteration t > 1 and for each

i€ [n].
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lterative Approximate CV (IACV)

Recall, for i=1,...,n:

5t _ L e
0) = argmin { 10— 013 + 09) )

where ¢/ = a(_t.fl) —a;Vog(Zs,; 5“?1)).

! —1

Goal: generate approximations 5(:,) = éY? at each iteration t > 1 and for each
i€ [n].
@ (approx the previous iterate) guY ~ gt

—I —1

@ (approx the gradient) taylor expansion at plt=1)
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lterative Approximate CV (IACV)

Recall, for i=1,...,n:

70 _ aramin d 10— 0112
)~ argmin { 10— 013+ o) | 1)

where 6/ = 9171 — arVog(Zs,; 5“?1)).

! —1

Goal: generate approximations é(_t,) = éY? at each iteration t > 1 and for each
i€ [n].

a(t—=1)

@ (approx the previous iterate) 6 ~ Uy

—i —i

@ (approx the gradient) taylor expansion at plt=1)

~ 1
IACV : 0) = arg min {Eue 0|3+ h(e)} ,
where 0/ = 07V — 0y (Vog(Zs,: 00 D) + V2g(Zs, ;0[O D — gle=1)).
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Advantages and Guarantees

Smaller computation complexity

Guaranteed per-iteration error control

Recover the existing one-step Newton method in the limit

@ Numerically performs well
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Advantages and Guarantees

Smaller computation complexity

Guaranteed per-iteration error control

Recover the existing one-step Newton method in the limit
@ Numerically performs well
Iterative Approximate Cross-Validation
Exhibit Hall 1 https://arxiv.org/abs/2303.02732
Thank you!
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