Counterfactual Identifiability of Bijective Causal Models

Arash Nasr-Esfahany, Mohammad Alizadeh, Devavrat Shah

Massachusetts Institute of Technology

Background: Causal Models

Bijective Causal Models

Consist of Bijective Generation Mechanism (BGM)

BGM Definition
$$\forall x: f(x, \cdot)$$
 is a bijection. $\rightarrow \forall x: v = f^{-1}(x, u).$

- Subsumes several causal models studied in the literature:
 - ✓ Nonlinear Additive Noise models (ANM) [Hoyer et. al., NeurIPS 2008]
 - ✓ Location Scale Noise models (LSNM) [Immer et. al., ICML 2023]
 - ✓ Post Nonlinear Causal Model (PNL) [Zhang et. al., UAI 2009]

Counterfactual Identifiability of BGMs

Identifiability Theorem: The Backdoor Criterion (BC)

• V = f(X, U)• $U \not\perp X$

Identifiability Theorem: The Backdoor Criterion (BC)

• $U, V \in \mathbb{R}^d$.

• X and Z can be discrete or continuous.

Identifiable from $P_{X,V,Z}$ if:

- $\forall x: \nabla_x |\det J_{f(x,\cdot)}| \text{ and } \nabla_x |\det J_{f^{-1}(x,\cdot)}| \text{ exist.}$
- (Variability) ∃{z₁, ..., z_{d+1}}: P_{U|Z} (· |z_i) are distinct.
 Please see the paper for precise definition of this

Please see the paper for precise definition of this condition.

• *U* **L X**|**Z**

Other Identifiability Theorems

The Markovian Case

Instrumental Variable (IV)

Video Streaming Simulation

CausalSim: A Causal Framework for Unbiased Trace-Driven Simulation [Alomar et. al., NSDI 2023]

Contributions

Introduced Bijective Causal Models.

Established their counterfactual identifiability in three well-known causal structures.

Proposed a practical method for learning them.

