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Does more data always help?

Generalization error for a desired target
task always improves with more
in‐distribution data.

But real data is often heterogeneous.
Even a curated dataset can contain
out‐of‐distribution (OOD) samples.

For a model trained on such data, we expect the generalization
error on the target task to be monotonic in the number of OOD
samples.
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Modeling heterogeneity in a dataset

Suppose dataset D consists of n target samples andm OOD
samples without the knowledge of sample identities.

We seek a hypothesis h that minimizes the generalization error
on the target task et(h).

The hypothesis is selected by minimizing the empirical loss,

ê(h) =
n+m∑
i=1

ℓ(h(xi), yi)
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An example using Fisher’s Linear
Discriminant

The target and OOD tasks are
both gaussian mixture models.

We consider a family of OOD
task distributions which are
translations of the target
distribution.
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An example using Fisher’s Linear
Discriminant

OOD data from the same
distribution can both improve
or deteriorate the target
generalization depending on
the number of OOD samples.

Generalization error on the
target task can be
non‐monotonic in the number
of OOD samples.
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Why does non-monotonicity occur?

More OOD samples decrease
the variance but increase the
bias. The trade‐off depends on
the distance between the two
distributions.
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Non-monotonic trends also occur in
popular benchmark datasets
Non‐monotonic trends occur due to geometric, semantic
nuisances and distribution shifts.
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Exploiting the non-monotonic trends in
generalization error

Assuming that the target and OOD samples are separable, we
consider the objective

êα(h) = αêt(h) + (1− α)êo(h).

We can compute the optimal α using an upper bound of the
generalization error1

α∗ = min
(
1,

n

n+m
×

(
1 +

√
m2

4ρ2(n+m)− nm

))
.

ρ is the ratio between task distance and model capacity.

In practice we consider, α to be a hyper‐parameter.

1Ben‐David et al., “A theory of learning from different domains”.
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Exploiting the non-monotonic trends in
generalization error
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Concluding Thoughts

Generalization error can be a non‐monotonic function of the
number of OOD samples.

A weighted objective between the OOD and target samples can
mitigate this non‐monotonicity.

For more details and experiments, check out
our paper on arXiv
arxiv.org/abs/2208.10967
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