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Generalized Associative Memory Model (GAMM)

feature 
layer

hidden 
layer

General
Associative

Memory

Input/
Output

´ GAMM is a two-layer architecture of 
neurons with symmetric interactions.

´ The symmetric interactions result in a 
dissipative dynamical system whose 
dynamical behavior can be explained 
using an energy function.

´ Memories are the local minima states of 
the energy function.

´ The contribution of each memory to the 
energy function depends on the 
interaction between the memories

´ The hidden layer activation function 
defines how the stored memories (Ξ) 
interact resulting in models with different 
memory capacities.

´ GAMM can store and retrieve singleton 
memories.

´ Memory capacity relates the number of 
neurons in the feature layer to the 
number of memories that can be stored

Schematic diagram of network operations.
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Sequence Memory developments

Kleinfeld (1986)

Multi-timescale networks (2019)

• Discrete states
• Linear memory 

interaction
• Discrete 

updates
• Low capacity 

(0.14 N) 

• Continuous 
states

• Continuous 
updates

• Low capacity 
(0.14 N) 



Outline

´ General Associative Memory Model

´ General Sequential Episodic Memory Model

´ Architecture
´ Energy function and dynamics

´ Sequence memory capacity



´ Sequential Episodic Memory (SEM) retrieval requires 
the ability to store and retrieve temporally related 
memories.

´ Traditional energy-based models are restricted to 
single memory retrieval.

´ General Sequential Episodic Memory Model 
(GSEMM) has a dynamic energy landscape 
capable of storing and retrieving of temporal 
memories in its dynamical evolution.

´ The system consists of two layers of neurons 
organized analogous to General Associative 
Memory Model (GAMM) with additional delay-
based intra-hidden layer connectivity.

´ In contrast to GAMM, GSEMM exhibits a dynamic 
energy surface controlled by the delay signal 
resulting in a system with instantaneous fixed-point 
dynamics

GSEMM neural architecture
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Schematic Representation of GSEMM operation
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• GAMM has a single attractor state the 
system converges to.

Energy Dynamics of GAMM vs GSEMM

• When the delay is sufficiently high in 
GSEMM, it has a sequence of meta-stable 
attractors that the system visits in the 
dynamical evolution.



•Analogous to current multi timescale 
sequence memory models.

•Derived by considering non-linear 
activation function for the feature 
layer and the identity activation 
function for the hidden layer

•In this setting, the stored memories 
interact linearly.

Linear 
GSEMM

•Introduce polynomial non-linearity in 
the hidden layer activation.

•Stored memories interact non-linearly 
resulting in capacity improvements 
over LISEM.

•Note that LISEM is the degree 1 case 
of Dense GSEMM

Dense 
GSEMM
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Linear for Linear GSEMM
Non-linear for Dense GSEMM



´ Storage of sequence memory cycle - 𝜉! →

𝜉" → 𝜉# → 𝜉$ → 𝜉! in the presence of 3 other 

memories

´ Each memory 𝜉% is a random binary vector (-1 

or +1) of size 100 preloaded in the synapses 

(Ξ).

´ The sequential relationship (the temporal 

connection between memories) is stored as 

an adjacency matrix in Φ

´ The energy surface diagram shows how 𝑉& 

controls the minima of the energy surface

Representative Example – Storage and Retrieval
LISEM Energy Surface



Representative Example – Energy Dynamics

Memory 
overlap

Output dynamics of LISEM

Attractor dynamics

Point where 𝜉! loses stability 
and the system is attracted 

to the basin of 𝜉"

• The first principle components of delayed 
neurons show how it influences the fixed 
points near all stored memories. Fixed 
points are depicted by colored circles. 

• The size of the circle is inversely 
proportional to the memories' energy – 
higher the energy, smaller the circle. 

• (top) The first principle component of the 
dynamical evolution of the nearest fixed 
point (red circle) of the energy surface 
and the current state of the fast sub-
system (green cross). 

• (bottom) The figure shows how the system 
is attracted to the nearest fixed point 
from the current state of the energy 
surface at each point in time.
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• Comparison of Linear GSEMM and Dense GSEMM based on their ability to store and retrieve cyclical 
memories with varying sequence lengths in a 100-neuron system.

Exponential Capacity Improvement in Dense GSEMM
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Sequence Memory Capacity of Dense GSEMM

Capacity of current 
sequence memory models



Questions?
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