

General Sequential **Episodic Memory Model**

Arjun Karuvally, Terrence J. Sejnowski, Hava T. Siegelmann, ICML 2023

- General Associative Memory Model
- General Sequential Episodic Memory Model
 - Architecture
 - Energy function and dynamics
 - Sequence memory capacity

General Associative Memory Model

- General Sequential Episodic Memory Model
 - Architecture
 - Energy function and dynamics
 - Sequence memory capacity

- GAMM is a two-layer architecture of neurons with symmetric interactions.
- The symmetric interactions result in a dissipative dynamical system whose dynamical behavior can be explained using an energy function.
- Memories are the local minima states of the energy function.
- The contribution of each memory to the energy function depends on the interaction between the memories
- The hidden layer activation function defines how the stored memories (E) interact resulting in models with different memory capacities.
- GAMM can store and retrieve singleton memories.
- Memory capacity relates the number of neurons in the feature layer to the number of memories that can be stored

Singleton memory developments

Sequence Memory developments

Kleinfeld (1986)

Multi-timescale networks (2019)

- Discrete states
- Linear memory
 interaction
- Discrete updates
- Low capacity (0.14 N)

- Continuous states
- Continuous
 updates
- Low capacity (0.14 N)

- General Associative Memory Model
- General Sequential Episodic Memory Model

Architecture

- Energy function and dynamics
- Sequence memory capacity

GSEMM neural architecture

- Sequential Episodic Memory (SEM) retrieval requires the ability to store and retrieve temporally related memories.
- Traditional energy-based models are restricted to single memory retrieval.
- General Sequential Episodic Memory Model (GSEMM) has a dynamic energy landscape capable of storing and retrieving of temporal memories in its dynamical evolution.
- The system consists of two layers of neurons organized analogous to General Associative Memory Model (GAMM) with additional delaybased intra-hidden layer connectivity.
- In contrast to GAMM, GSEMM exhibits a dynamic energy surface controlled by the delay signal resulting in a system with instantaneous fixed-point dynamics

Schematic Representation of GSEMM operation

- General Associative Memory Model
- General Sequential Episodic Memory Model
 - Architecture
 - Energy function and dynamics
 - Sequence memory capacity

Energy Dynamics of GAMM vs GSEMM

GAMM has a single attractor state the system converges to.

• When the delay is sufficiently high in GSEMM, it has a sequence of meta-stable attractors that the system visits in the dynamical evolution.

Linear GSEMM

Analogous to current multi timescale sequence memory models.
Derived by considering non-linear

activation function for the feature layer and the identity activation function for the hidden layer

• In this setting, the stored memories interact linearly.

Dense GSEMM

- Introduce polynomial non-linearity in the hidden layer activation.
- Stored memories interact non-linearly resulting in capacity improvements over LISEM.
- Note that LISEM is the degree 1 case of Dense GSEMM

Linear for Linear GSEMM Non-linear for Dense GSEMM

Representative Example – Storage and Retrieval

- Storage of sequence memory cycle $\xi_4 \rightarrow \xi_5 \rightarrow \xi_6 \rightarrow \xi_7 \rightarrow \xi_4$ in the presence of 3 other memories
- Each memory ξ_i is a random binary vector (-1 or +1) of size 100 preloaded in the synapses
 (Ξ).
- The sequential relationship (the temporal connection between memories) is stored as an adjacency matrix in Φ
- The energy surface diagram shows how V_d controls the minima of the energy surface

LISEM Energy Surface

Representative Example – Energy Dynamics

- General Associative Memory Model
- General Sequential Episodic Memory Model
 - Architecture
 - Energy function and dynamics
 - Sequence memory capacity

Exponential Capacity Improvement in Dense GSEMM

 Comparison of Linear GSEMM and Dense GSEMM based on their ability to store and retrieve cyclical memories with varying sequence lengths in a 100-neuron system.

Questions?

References

- Hopfield, John J.. "Neural networks and physical systems with emergent collective computational abilities." Proceedings of the National Academy of Sciences of the United States of America 79 8 (1982): 2554-8.
- Chen, H. H. et al. "High order correlation model for associative memory." (1987).
- Krotov, Dmitry and John J. Hopfield. "Dense Associative Memory for Pattern Recognition." NIPS (2016).
- Demircigil, Mete et al. "On a Model of Associative Memory with Huge Storage Capacity." Journal of Statistical Physics 168 (2017): 288-299.
- Ramsauer, Hubert et al. "Hopfield Networks is All You Need." ArXiv abs/2008.02217 (2020): n. pag.
- Krotov, Dmitry and John J. Hopfield. "Large Associative Memory Problem in Neurobiology and Machine Learning." ArXiv abs/2008.06996 (2020): n. pag.
- Kleinfeld, David. "Sequential state generation by model neural networks." *Proceedings of the National Academy of Sciences of the United States of America* 83 24 (1986): 9469-73 .
- Kurikawa, Tomoki et al. "Repeated sequential learning increases memory capacity via effective decorrelation in a recurrent neural network." ArXiv abs/1906.11770 (2019): n. pag.