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Research Questions

SDEs have been used for optimal control of the learning rate, scaling rules
(SGD, Adam, and RMSprop), exit times, and convergence bounds.

We use SDEs to address the following questions:

1 How does the noise-curvature interaction help SAM escape sharp
regions?

2 Are there any “traps” that could slow SAM down?
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Recap on SAM

Sharpness-Aware Minimization (SAM) is a successful optimizer [3] which

1 Aims at minimizing the worst-case-sharpness:[
max
∥ϵ∥2≤ρ

fS(x + ϵ)− fS(x)

]
⇝ Better Generalization

2 Approximates the optimal perturbation with ϵ∗(x) ≈ ρ ∇fS(x)
∥∇fS(x)∥
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Recap on SAM

These are the SAM variants that we analyzed:

1 SAM:

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk (xk)

∥∇fγk (xk)∥

)

2 USAM (Unnormalized SAM):

xk+1 = xk − η∇fγk (xk + ρ∇fγk (xk))
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Related Works

The understanding of the dynamics of SAM is drawing much-deserved
attention and is in constant evolution. So far:

1 SAM implicitly minimizes a regularized loss which drives the
dynamics toward flatter areas [2, 4]

2 Convergence results for different classes of functions [1]

3 ODE Approximations [1, 4]
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Findings

For USAM, we have

dXt = −∇f̃ USAM(Xt)dt +
(
Id+ρ∇2f (Xt)

) (
ηΣSGD (Xt)

)1/2
dWt ,

where f̃ USAM(x) := f (x)+ρ
2∥∇f (x)∥22
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Findings

For SAM, we have

dXt = −∇f̃ SAM(Xt)dt +
√
η
(
ΣSGD(Xt)+ρHt

(
Σ̄(Xt) + Σ̄(Xt)⊤

))
dWt ,

where

1 Ht = ∇2f (Xt)

2 Σ̄(x) = E
[
(∇f (x)−∇fγ (x)) ·

(
E
[

∇fγ(x)
∥∇fγ(x)∥2

]
− ∇fγ(x)

∥∇fγ(x)∥2

)⊤
]

3 f̃ SAM(x) := f (x)+ρE [∥∇fγ(x)∥2]
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Experimental Validation
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Conclusion

Implicit regularization drives SAM towards any critical point

The implicit noise of SAM scales with the local curvature
⇝ Helps to escape sharper areas

Might be attracted by saddles or at least, they might be slower at
escaping them than SGD

Much more to do on this topic!
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