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Black Box Optimization

Black box optimization (BBO), also referred to as derivative free
optimization (DFO) and zeroth order (ZO) optimization, is an
important subfield with important practical applications in business,
chemistry, computer science, economics, engineering design,
mathematics, medicine, operations research, and physics.

Input:
x ???

Black Box

Output:
f (x)

BBO problems naturally arise when the structure of the objective
function is unknown (e.g. someone else’s computer simulation) or
very laborious to differentiate (e.g. your legacy FORTRAN code).
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What if the black box output f (x) is a noise corrupted version of a
smooth function fs(x) that can be decomposed as

f (x) = fs(x) + φ(x) (1)

where φ(x) is noise?

Our goal is to solve
min

x∈RNx

{
fs(x)

}
(2)

using only samples from the noisy black box given in (1) instead of
the inaccessible smooth function fs(x).
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Examples Of Noise φ(x) With fs(x) = ‖x‖22 And Nx = 1

Deterministic φ(x): Stochastic φ(x):

High frequency periodic function Draw IID uniform samples

φ(x) = −3 cos
(
6 ‖x‖2

)
φ(x) ∼ U(−3, 3)

8 / 29



Examples Of Noise φ(x) With fs(x) = ‖x‖22 And Nx = 1

Deterministic φ(x): Stochastic φ(x):

High frequency periodic function Draw IID uniform samples

φ(x) = −3 cos
(
6 ‖x‖2

)
φ(x) ∼ U(−3, 3)

9 / 29



Examples Of Noise φ(x) With fs(x) = ‖x‖22 And Nx = 1

Deterministic φ(x): Stochastic φ(x):

High frequency periodic function Draw IID uniform samples

φ(x) = −3 cos
(
6 ‖x‖2

)
φ(x) ∼ U(−3, 3)

10 / 29



Minimize the Rosenbrock function

fs(x1, x2) =
(
1− x1

)2 + 100
(
x2 − (x1)2)2 (3)

f (x1, x2) = fs(x1, x2) +N (0, 100) (4)

a) |fs(x)| b) |f (x)|
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Implicit filtering (IF) methods were designed to handle noisy objective
function evaluations and only sample f (x) directly.

IF methods have established convergence theory.

IF methods are memoryless and do not explicitly keep track of
previous values of f (x).

NNAIF keeps track of previous values of f (x) to build a relatively
cheap nonlinear surrogate model f̂s(x,Θk).

Derivatives of f̂s can be obtained via automatic differentiation.

Use surrogate model f̂s to obtain an approximate minimizer of fs(x).

Use surrogate model f̂s to propose points likely to decrease fs(x).

If surrogate model f̂s is bad, fall back to convergence of IF.
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c) |f (x)| d)
∣∣∣f̂s(x,Θ0)

∣∣∣

e) |f (x)| f)
∣∣∣f̂s(x,Θ1)

∣∣∣
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g) |f (x)| h)
∣∣∣f̂s(x,Θ2)

∣∣∣

i) |f (x)| j)
∣∣∣f̂s(x,Θ3)

∣∣∣

23 / 29



g) |f (x)| h)
∣∣∣f̂s(x,Θ2)

∣∣∣

i) |f (x)| j)
∣∣∣f̂s(x,Θ3)

∣∣∣

24 / 29



Summary

NNAIF is a novel accelerated DFO method for unconstrained
optimization problems.

NNAIF demonstrates how even crude neural network surrogate
models of the objective function fs(x) can be used to improve the
performance of IF optimization methods.

NNAIF maintains established convergence properties of IF methods.

Code and documentation available at:
https://github.com/0x4249/NNAIF
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