

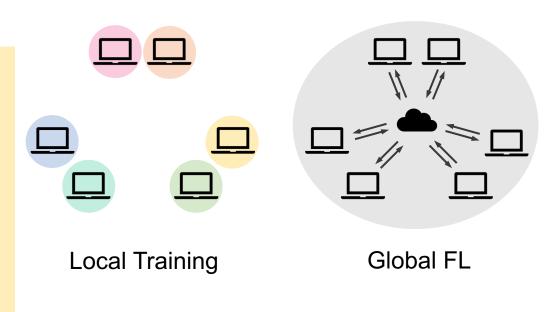
AIFARMS Artificial Intelligence for Future Agricultur Resilience, Management, and Sustainabil

Optimizing the Collaboration Structure in Cross-Silo Federated Learning

Wenxuan Bao

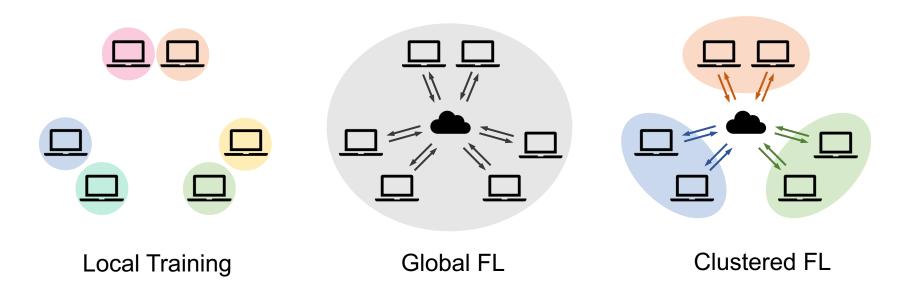
Haohan Wang

Jun Wu


Jingrui He

University of Illinois Urbana-Champaign {wbao4,haohanw,junwu3,jingrui}@illinois.edu baowenxuan.github.io, haohanwang.github.io, publish.illinois.edu/junwu3, hejingrui.org

Negative Transfer in Federated Learning


And La

- Federated Learning (FL): Multiple clients collaborate to train machine learning models without sharing their raw data.
- Global FL: All clients share one global model.
 - Example: FedAvg, FedProx, etc.
- Negative Transfer: When clients have non-IID data, ε_i(h_G) > ε_i(h_i) for some client i,
 - the global model h_G can be even worse than the local model h_i !

Clustered FL and Collaboration Structure

- Clustered FL groups clients into coalitions based on distributions; each client only shares model with clients in the same coalition.
- Question: What is the optimal collaboration structure, i.e., which clients should train shared model?

Our contributions

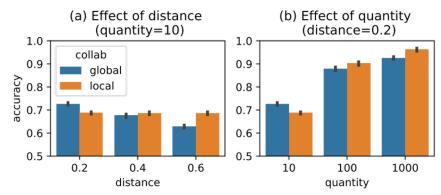
Theory: We analyze how clustered FL performance is affected by two key factors: *distribution distance* and *data quantity*.

 Algorithm: We propose FedCollab to solve for the best collaboration structure.

 Extensive experiments: We test FedCollab under label shift, feature shift and concept shift with various models / datasets.

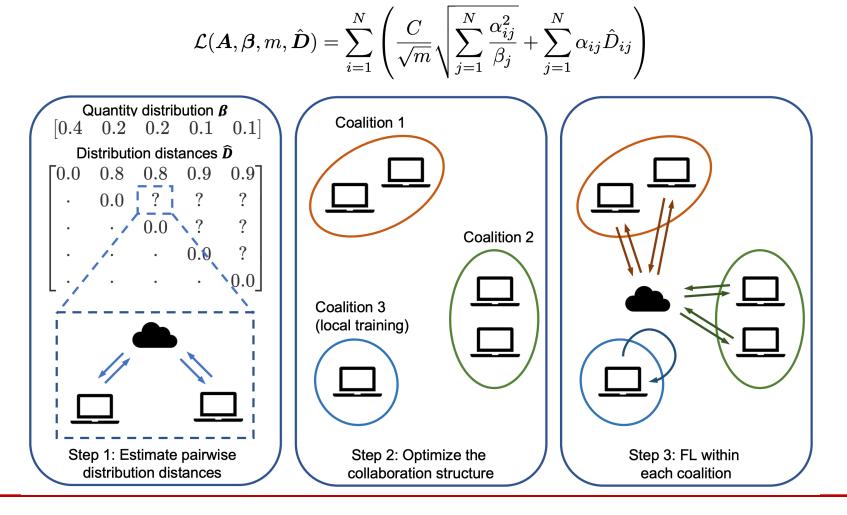
Theory: Error Bound for Clustered FL

Theorem 3.3. (informal) Let
$$\hat{h}_{\alpha_i} = \arg \min_{h \in \mathcal{H}} \sum_{j=1}^N \alpha_{ij} \hat{\epsilon}_j(h)$$
 where $\sum_{j=1}^N \alpha_{ij} = 1$. With probability at least $1 - 2\delta$,
 $\epsilon_i(\hat{h}_{\alpha_i}) \leq \epsilon_i(h_i^*) + 2\phi_{|\mathcal{H}|}(\alpha_i, \beta, m, \delta) + 2\sum_{j \neq i} \alpha_{ij} D(\mathcal{D}_i, \mathcal{D}_j)$
where $\phi_{|\mathcal{H}|}(\alpha_i, \beta, m, \delta) = \sqrt{\left(\sum_{j=1}^N \frac{\alpha_{ij}^2}{\beta_j}\right) \left(\frac{2d \log(2m+2) + \log(4/\delta)}{m}\right)}$, and $D(\mathcal{D}_i, \mathcal{D}_j) = \max_{h \in \mathcal{H}} |\epsilon_i(h) - \epsilon_j(h)|$


- The error upper bound of client *i* is controlled by
 - Collaboration structure α_{ij}
 - Pairwise distribution distances $D(\mathcal{D}_i, \mathcal{D}_j)$
 - Data quantities β_j

Theory: Optimal Collaboration Structure

The optimal collaboration structure (that minimizes the error bound) depends on distribution distances and data quantities!



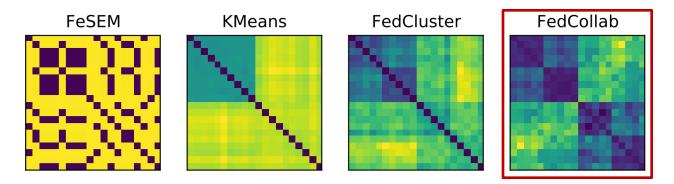
- Clients prefer collaborators with smaller distribution distances.
 - Collaboration is only beneficial when distribution distance is small enough.
- Clients with more data are *pickier* in the choice of collaborators.
 - Collaboration is only beneficial when quantity is small.

Algorithm: FedCollab

- 7 -

Experiments: Alleviating Negative Transfer

FedCollab alleviates negative transfer for both global FL and personalized FL.


Method	Label Shift (FashionMNIST)			Feature Shift (CIFAR-10)			Concept Shift (CIFAR-100)		
	Acc \uparrow	IPR \uparrow	$RSD\downarrow$	$ $ Acc \uparrow	IPR \uparrow	$RSD\downarrow$	Acc \uparrow	IPR ↑	RSD↓
Local Train	86.05 (0.28)	-	-	38.65 (0.44)	-	-	29.82 (0.56)	-	-
FedAvg	46.64 (0.12)	46.00 (2.24)	41.03 (0.24)	44.31 (0.98)	86.00 (4.18)	4.62 (0.58)	26.62 (0.12)	50.00 (0.00)	11.54 (0.45)
+FedCollab	92.45(0.07)	100.00 (0.00)	$5.99_{(0.41)}$	52.61 (0.60)	100.00 (0.00)	3.30 (0.63)	40.94 (0.22)	100.00 (0.00)	2.78(0.30)
FedProx	46.70 (0.08)	$45.00 \ \textbf{(5.00)}$	41.09 (0.29)	44.45 (0.58)	87.00 (4.47)	4.74 (0.56)	26.78 (0.14)	50.00 (0.00)	11.66 (0.36)
+FedCollab	92.39 (0.15)	100.00 (0.00)	6.02(0.37)	52.73 (0.64)	100.00 (0.00)	3.16 (0.61)	40.99 (0.17)	100.00 (0.00)	2.79(0.34)
FedNova	75.92 (1.14)	45.00 (3.54)	12.38 (1.25)	46.98 (0.57)	99.00 (2.24)	3.42(0.22)	26.46 (0.13)	50.00 (0.00)	10.57 (0.32)
+FedCollab	92.47 (0.13)	100.00 (0.00)	5.97 (0.39)	52.72 (0.57)	100.00 (0.00)	3.18 (0.63)	40.92 (0.36)	100.00 (0.00)	2.75(0.43)
Finetune	67.32 (3.17)	48.00 (2.74)	22.97 (2.82)	44.17 (0.99)	82.00 (2.74)	5.14 (0.32)	33.30 (4.79)	50.00 (0.00)	13.95 (0.57)
+FedCollab	92.57 (0.15)	99.00 (2.24)	6.07 (0.30)	51.53(0.61)	100.00 (0.00)	2.92(0.46)	40.94 (2.36)	100.00 (0.00)	2.54 (0.30)
Per-FedAvg	51.13 (4.10)	49.00 (2.24)	37.35 (4.15)	43.78 (0.69)	83.00 (9.08)	4.74 (0.65)	27.39 (0.24)	50.00 (0.00)	12.24 (0.46)
+FedCollab	92.16 (0.25)	97.00 (6.71)	6.00 (0.25)	52.64 (0.45)	100.00 (0.00)	3.03 (0.30)	41.04 (0.26)	100.00 (0.00)	2.85(0.49)
pFedMe	55.31 (3.45)	47.00 (4.47)	33.71 (3.11)	39.74 (0.85)	60.00 (12.25)	4.81 (0.74)	27.04 (0.39)	48.00 (2.74)	10.39 (0.47)
+FedCollab	92.18 (0.43)	99.00 (2.24)	6.40(0.81)	47.20 (1.29)	97.00 (2.74)	3.02 (0.30)	37.47 (0.31)	100.00 (0.00)	3.04(0.23)
Ditto	68.73 (1.40)	48.00 (2.74)	20.29 (2.06)	47.04 (0.30)	97.00 (2.74)	3.85 (0.35)	32.50 (0.40)	50.00 (0.00)	12.22 (0.36)
+FedCollab	92.55(0.08)	99.00(2.24)	6.11 (0.30)	50.97 (0.75)	99.00 (2.24)	3.38(1.55)	40.33 (0.33)	100.00 (0.00)	2.16(0.30)

IPR: % of clients with accuracy gains, i.e., FL model is better than local model RSD: standard deviation clients' accuracy gains

Experiments: Comparison

- Isan Lo
- FedCollab outperforms other clustered FL algorithms because it utilizes quantity information and provides high-quality estimation of distribution distances.

Method	Label Shift (FashionMNIST)			Feature Shift (CIFAR-10)			Concept Shift (CIFAR-100)		
	Acc \uparrow	IPR \uparrow	$RSD\downarrow$	$Acc\uparrow$	IPR \uparrow	$RSD\downarrow$	Acc \uparrow	IPR \uparrow	RSD↓
IFCA	91.49 (0.61)	95.00 (5.00)	5.62(0.54)	49.78 (1.01)	100.00 (0.00)	3.13 (0.52)	30.74 (4.46)	60.00 (22.36)	11.28 (5.04)
FedCluster	92.07 (0.47)	95.00 (7.07)	6.14 (0.49)	44.86 (1.90)	79.00 (17.10)	5.64 (1.81)	29.23 (2.18)	62.00 (12.55)	9.55 (0.69)
FeSEM	56.79 (6.71)	45.00 (11.18)	36.12 (2.08)	42.73 (0.37)	82.00 (5.70)	4.10(0.62)	31.92 (3.12)	72.00 (12.55)	9.81 (1.77)
KMeans	69.30 (0.81)	72.00 (2.74)	35.87 (1.22)	48.61 (1.15)	96.00 (4.18)	4.54 (0.74)	34.24 (3.01)	85.00 (13.69)	6.47 (3.06)
FEDCOLLAB	92.45(0.07)	100.00 (0.00)	5.99 (0.41)	52.61 (0.60)	100.00 (0.00)	3.30(0.63)	40.94 (0.22)	100.00 (0.00)	2.78(0.30)

Summary

Theory: We analyze how clustered FL performance is affected by two key factors: *distribution distance* and *data quantity*.

 Algorithm: We propose FedCollab to solve for the best collaboration structure.

 Extensive experiments: We test FedCollab under label shift, feature shift and concept shift with various models / datasets.

