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Learning to Optimize

Consider minx∈Rn F (x).
Classic Optimization: Designing iterative update rules xk+1 = TF (xk)

Learning to Optimize (L2O): Learn an update rule from data xk+1 = TF (xk; θ)

For example,
A classic optimization algorithm: gradient descent:

xk+1 = xk − αk∇F (xk), k = 0, 1, 2, . . .

Learn an update rule that is parameterized by neural networks1:

xk+1 = xk − NeuralNetwork(xk; ϕ)

The parameters ϕ are trained via minϕ EF ∈F
∑K

k=1 F (xk),
where F denotes the training set of optimization problem instances.

Such learned rules can generalize to problems similar to the training samples.

1 Andrychowicz et al. [2016], Li and Malik [2016]
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Discussions on L2O
Observation: The learned update rule may diverge on unseen instances.

How to alleviate such an issue? In the literature, some efforts have been made2:
• Regularizing the output of neural networks
• Improving training techniques

We consider this problem from another perspective:
• Neural networks are universal approximators.
• We actually search the update rule from such an operator space:

{d : Rn → Rn, d is continuous}

The searching space is too large!
Some operators are turely not what we want:

• No fixed point: d(x) = x + 1
• Unable to converge: d(x) = 2x

Can we explicitly remove these invalid operators from the searching space?
2 [Wichrowska et al., 2017, Wu et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al.,
2022, Metz et al., 2022]
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A Preliminary Result

We make assumptions on the update rule and derive a rule with structure.

Core assumptions: For any sequence {xk} generated by the given update rule

• If xk is an optimal solution, then it holds that xk+1 = xk

• The sequence {xk} must converge to one of the optimal solutions.

Theorem (Informal)

For any convex and smooth f and any update rule that satisfies the above
assumptions, there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

xk+1 = xk − Pk∇f(xk) − bk,

with Pk is bounded and bk → 0 as k → ∞.

A “good” update rule is not totally free!
Instead of learning dk, one may learn a preconditioner Pk and a bias bk.
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More results

We extend such a result to

• Convex non-smooth functions
• Update rules that take in a longer horizon

We propose a novel L2O model inspired by these theoretical results.

The proposed model has strong generalization ability.
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Comparison: In-Distribution Test
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Figure: LASSO: Train and test on synthetic data.
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Figure: Logistic: Train and test on synthetic data.
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Comparison: Out-of-Distribution Test
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Figure: LASSO: Train on synthetic data and test on real data (BSDS500).
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Figure: Logistic: Train on synthetic data and test on real data (Ionosphere).
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Thanks for listening!

Our paper: https://openreview.net/forum?id=Tm7NpcjSE4

Our codes: https://github.com/xhchrn/MS4L2O
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