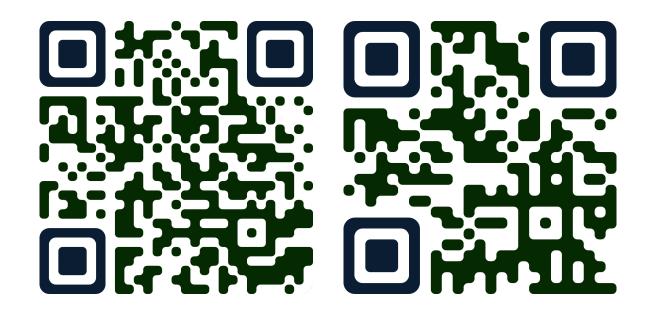
Q-Flow: Generative Modeling for **Differential Equations of Open Quantum Dynamics with Normalizing Flows**

Owen Dugan¹⁵, Peter Y. Lu²⁵, Rumen Dangovski³⁵, Di Luo^{*456}, Marin Soljačić¹⁵ ¹MIT Physics, ²Data Science Institute UChicago, ³MIT EECS, ⁴MIT CSAIL, ⁵IAIFI, ⁶Harvard Physics *corresponding author: <u>diluo@mit.edu</u>



- 1. Overview of Problem: Open Quantum Systems
- 2. Q-Flow Overview
- 3. Q-Function Details
- 4. Q-Flow Method: Modeling and Evolving Q
- 5. Results: Dissipative Bose-Hubbard
- 6. Results: Dissipative Harmonic Oscillator

Outline

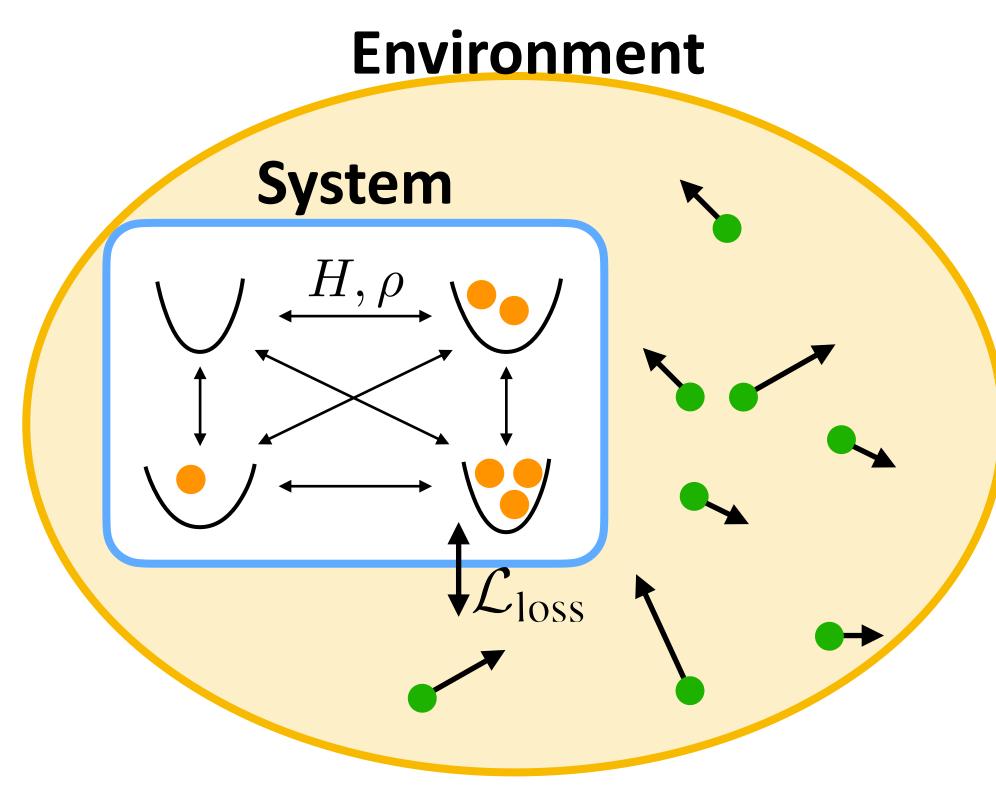
Overview of Problem: Open Quantum Systems

Open Quantum Systems

Definition: any quantum system that interacts with the environment

Applications:

- Fundamental science
 - Phase transitions
- Quantum technology
 - Quantum computers
 - Superconductors



Simulating Open Quantum Systems (OQS)

Density matrix ρ :

- Represents the state of an OQS
- Square complex-valued matrix

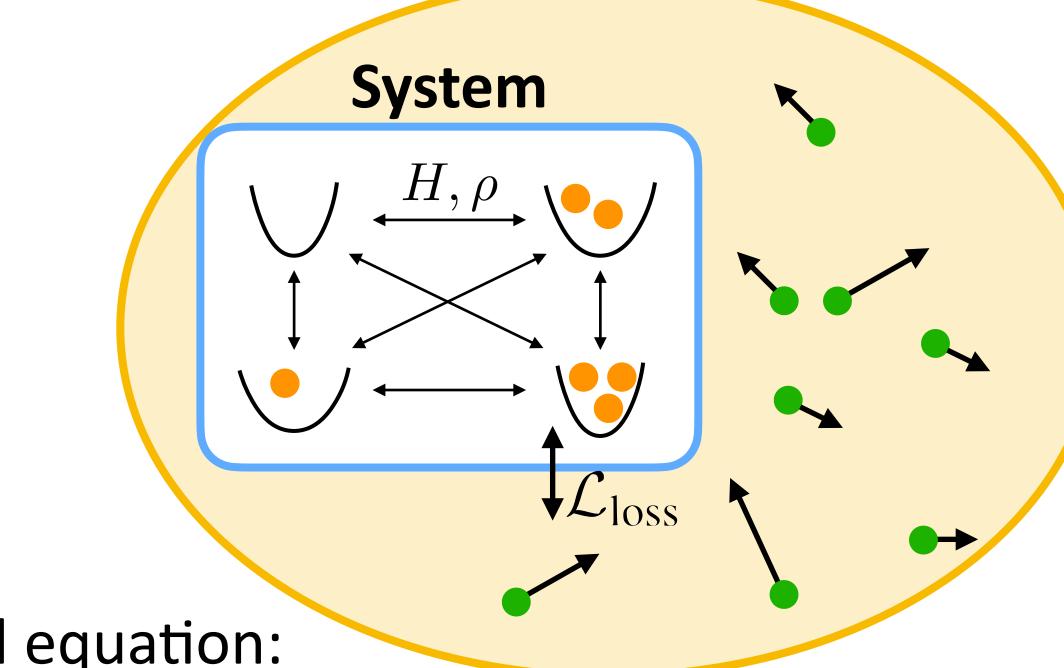
•
$$Tr(\rho) = 1$$

Equation of Motion (EOM):

• ρ evolves according to the differential equation:

$$\dot{\rho} = \mathcal{L}\rho = -i[H,\rho] + \mathcal{L}$$
The "Liouvillian" System Hamiltonian Superoperator Hamiltonian

Environment



Challenges Simulating Open Quantum Systems

Curse of Dimensionality:

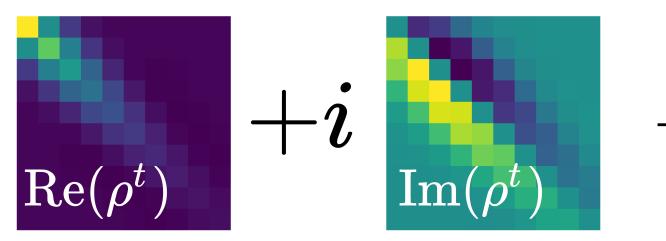
 Density matrix exponential in system size

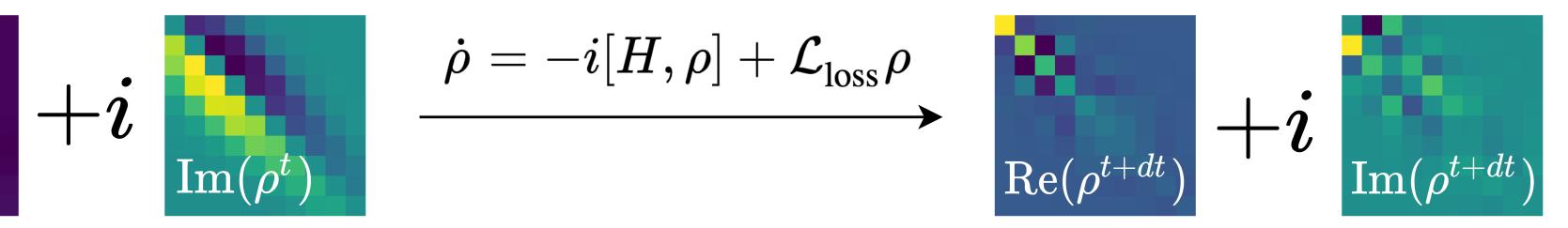
> Large systems infeasible for conventional solvers

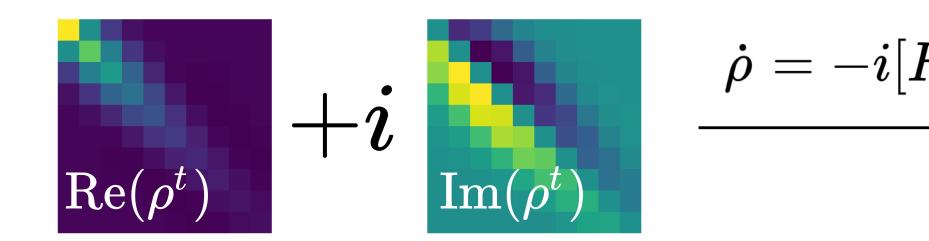
Challenging Parametrization:

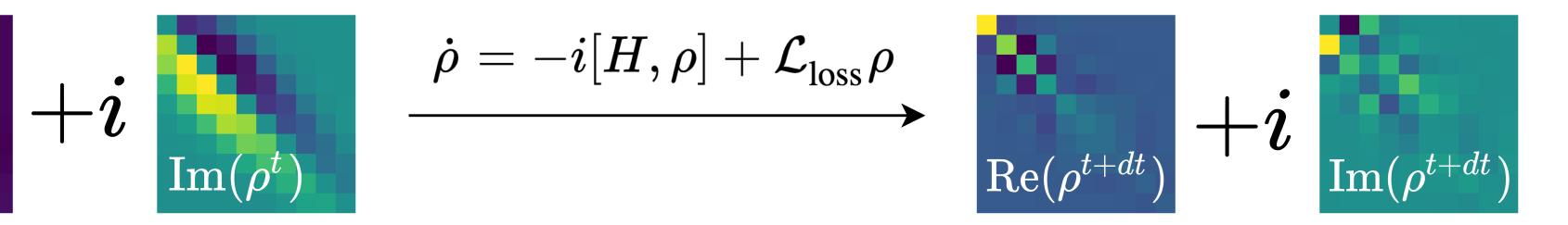
- ρ is complex valued and $Tr(\rho) = 1$
- Complex dynamics and interactions *Difficult to model with Neural Networks*

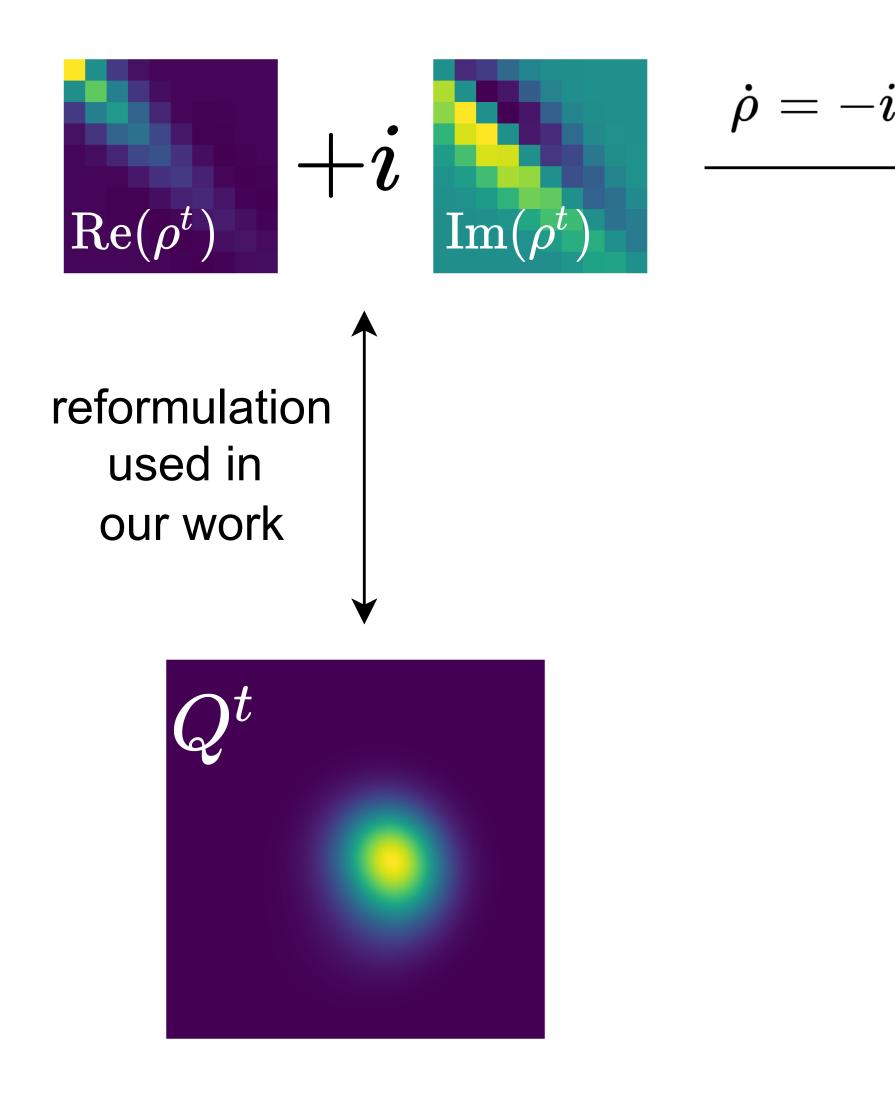
Past neural approaches limited to spin systems!

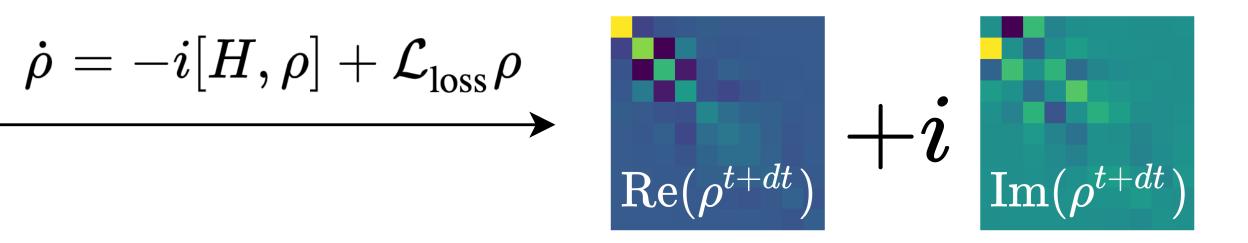


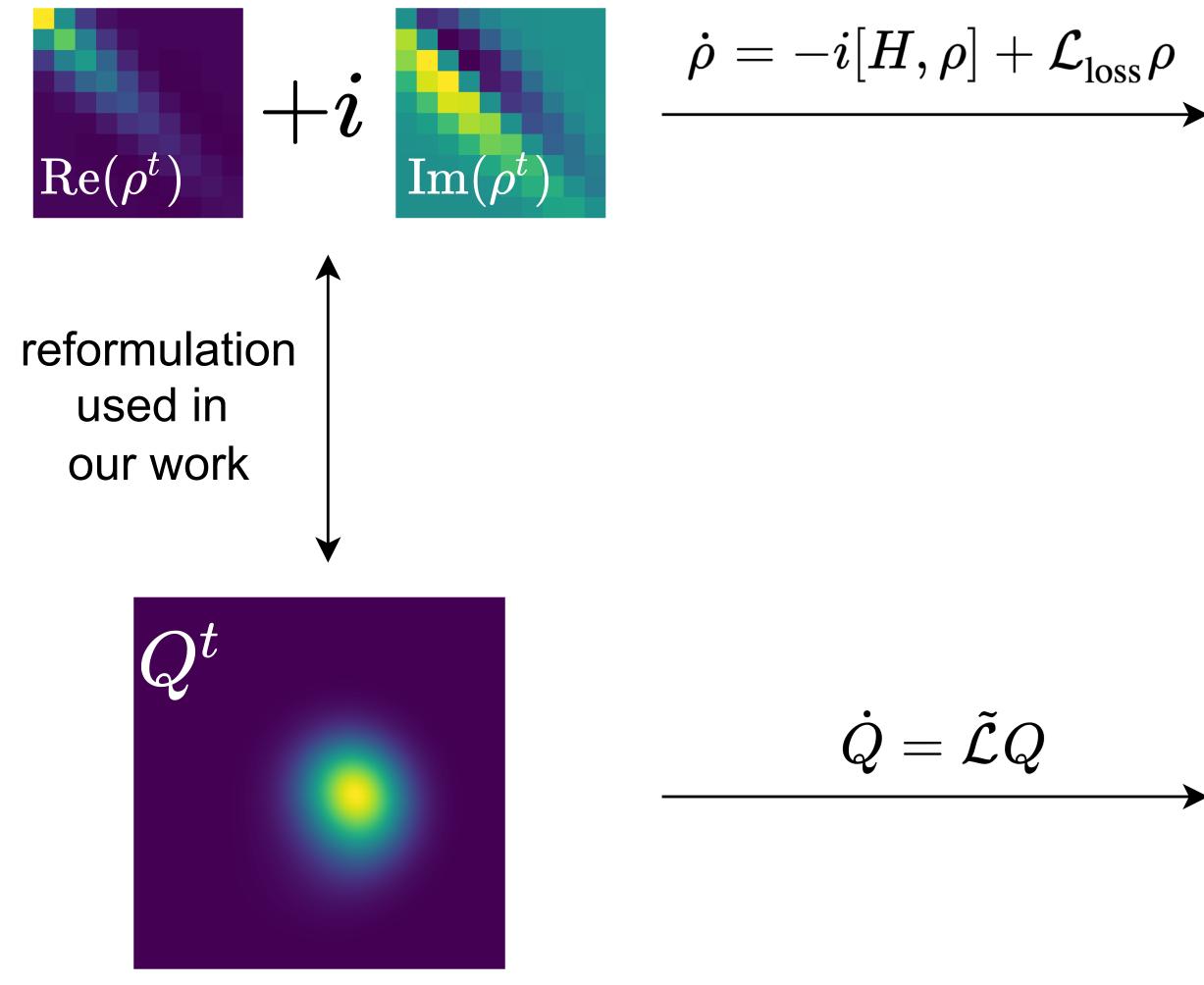




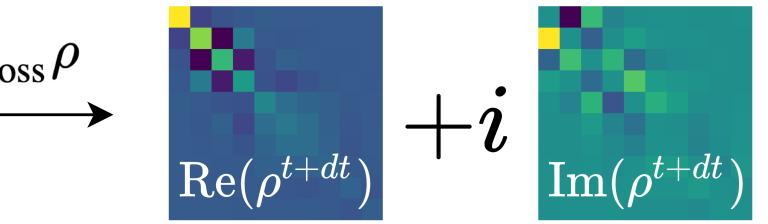


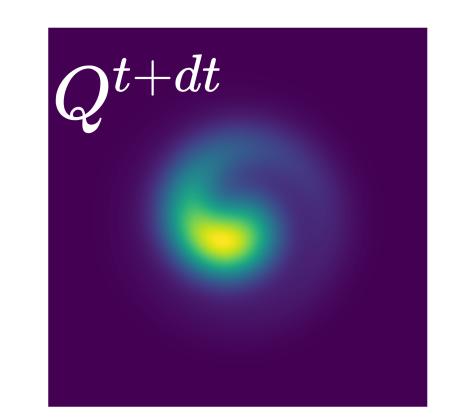


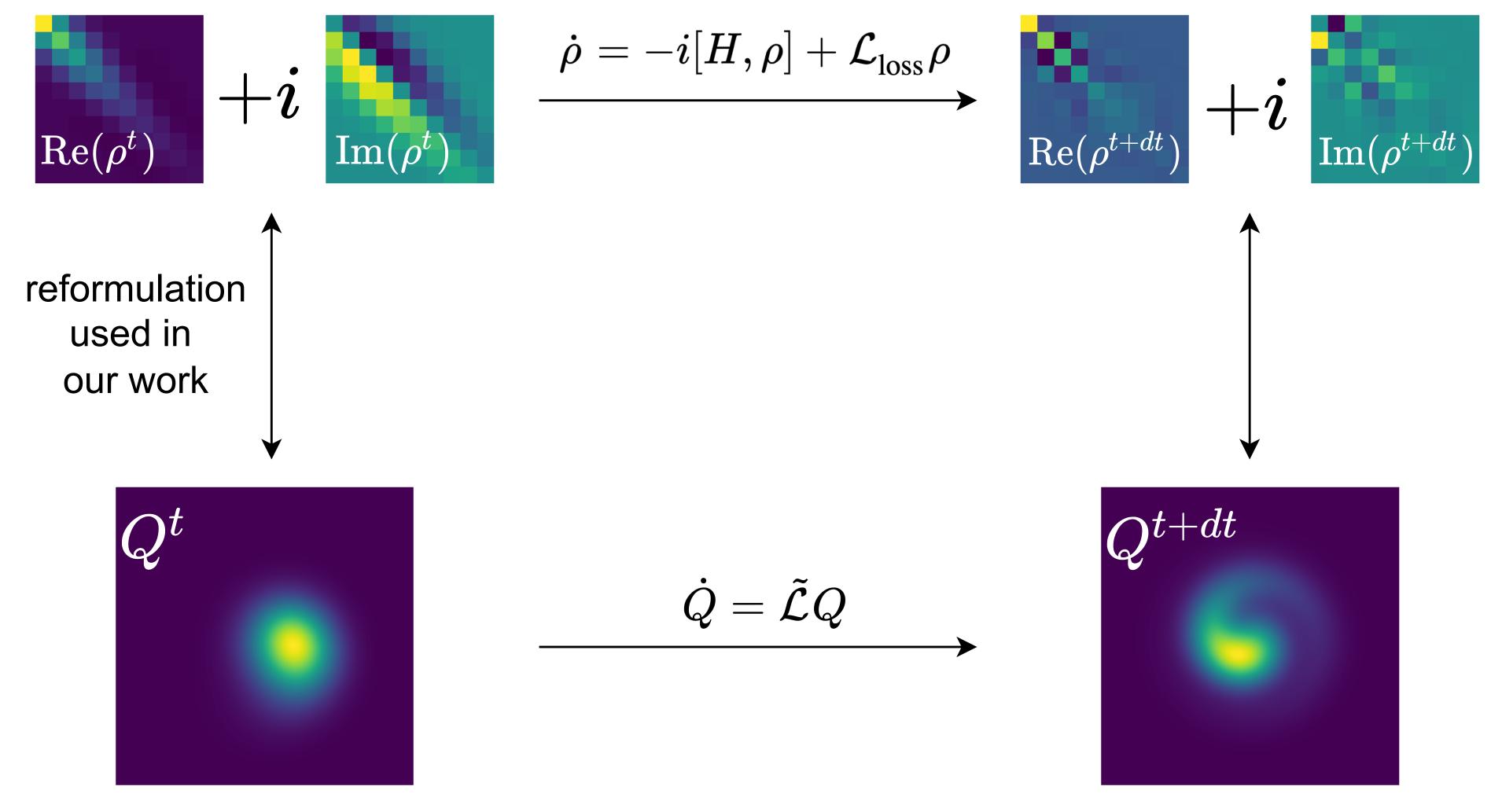




Q-Flow Procedure

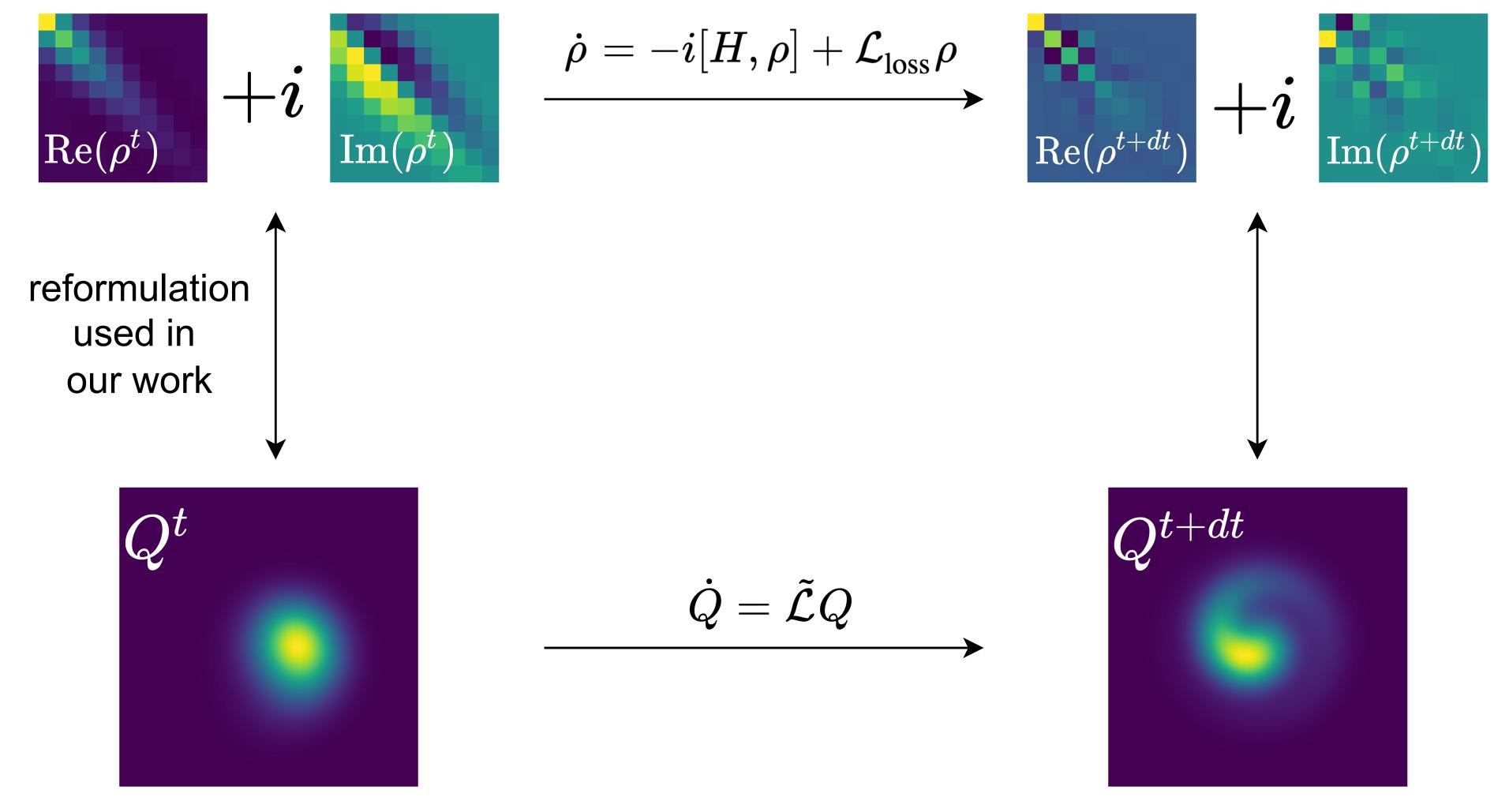




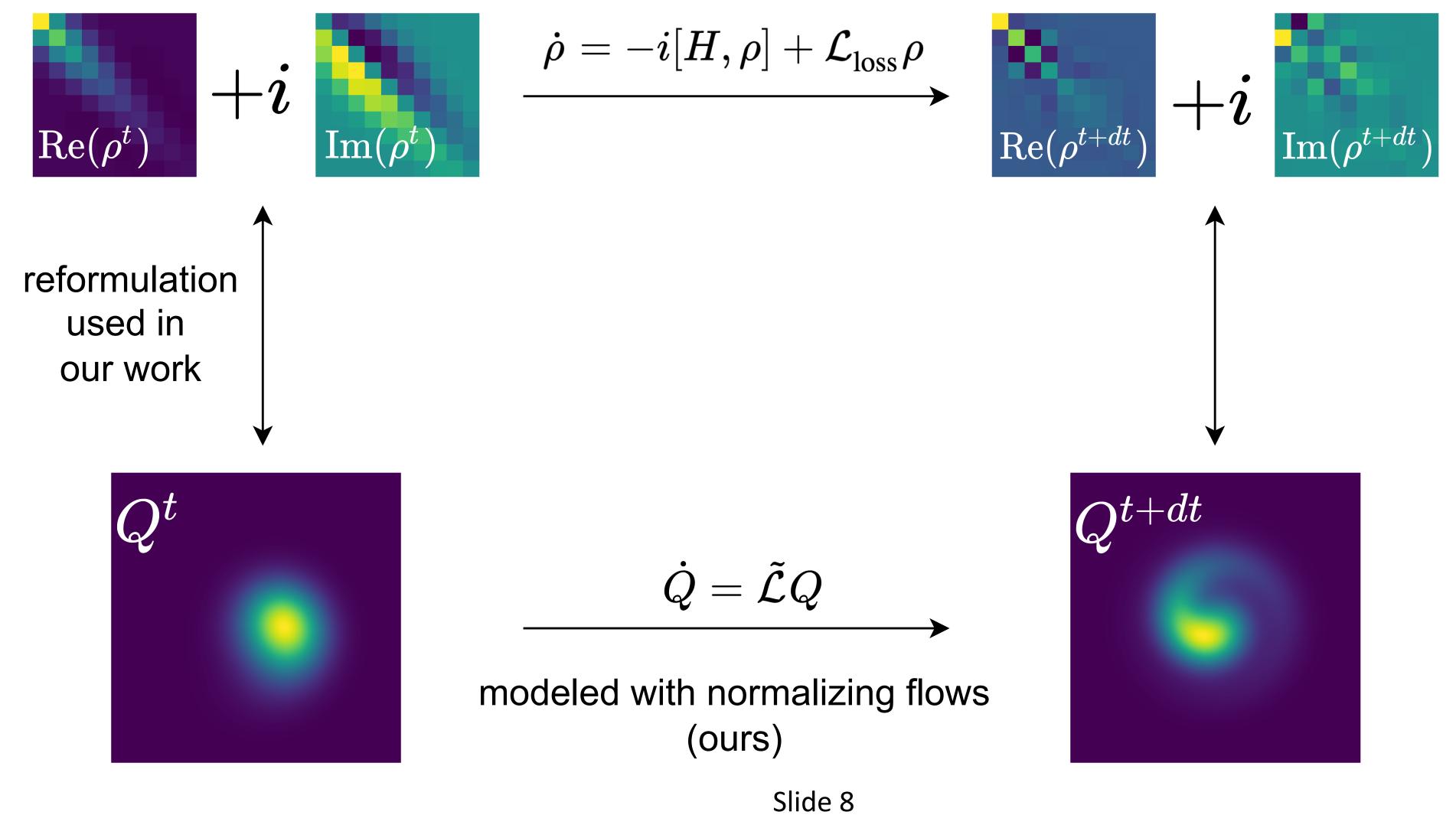


Q-Flow Procedure

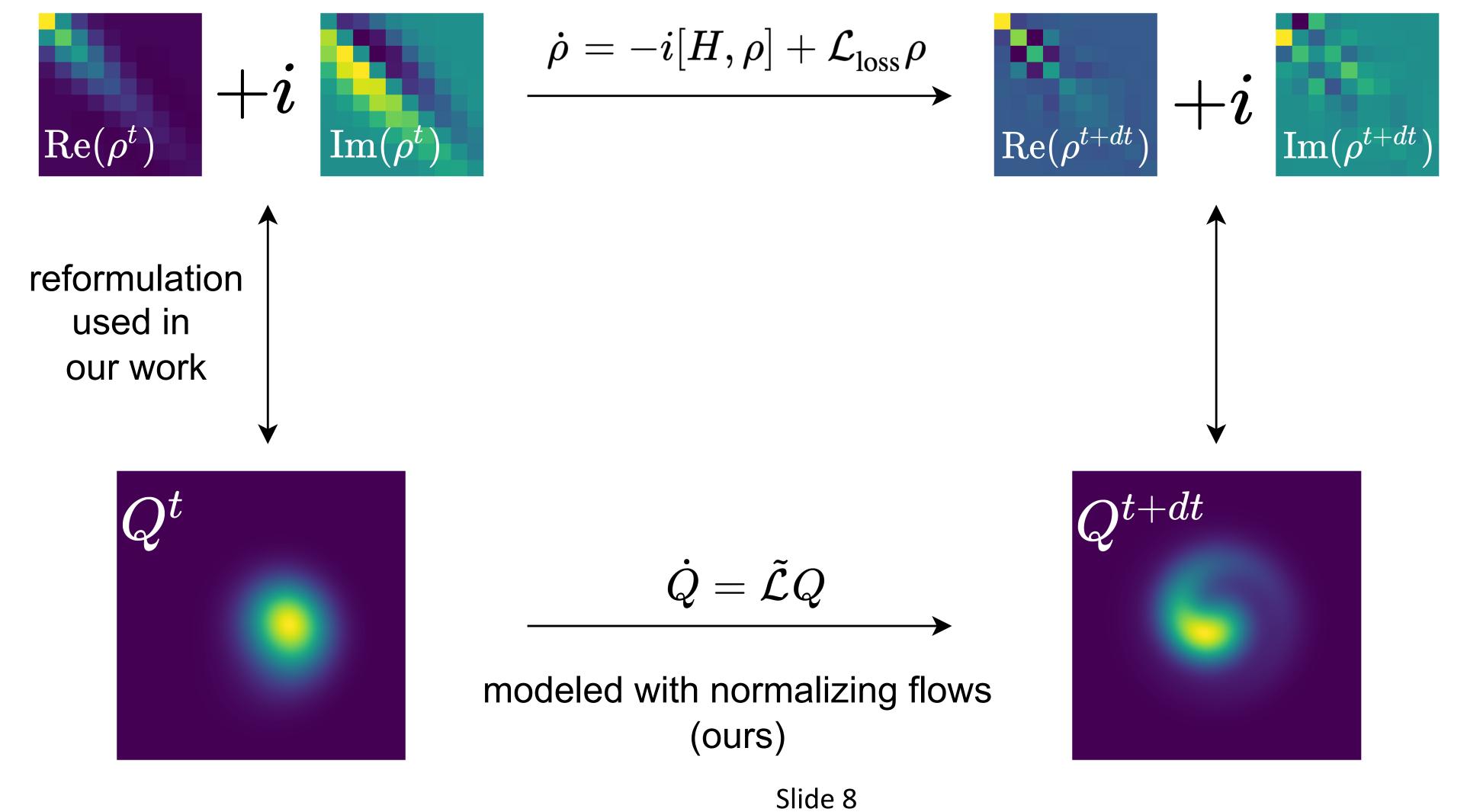
- 1. Convert EOM and ρ to Q Function
- 2. Model Q with a normalizing flow



- 1. Convert EOM and ρ to Q Function
- 2. Model Q with a normalizing flow

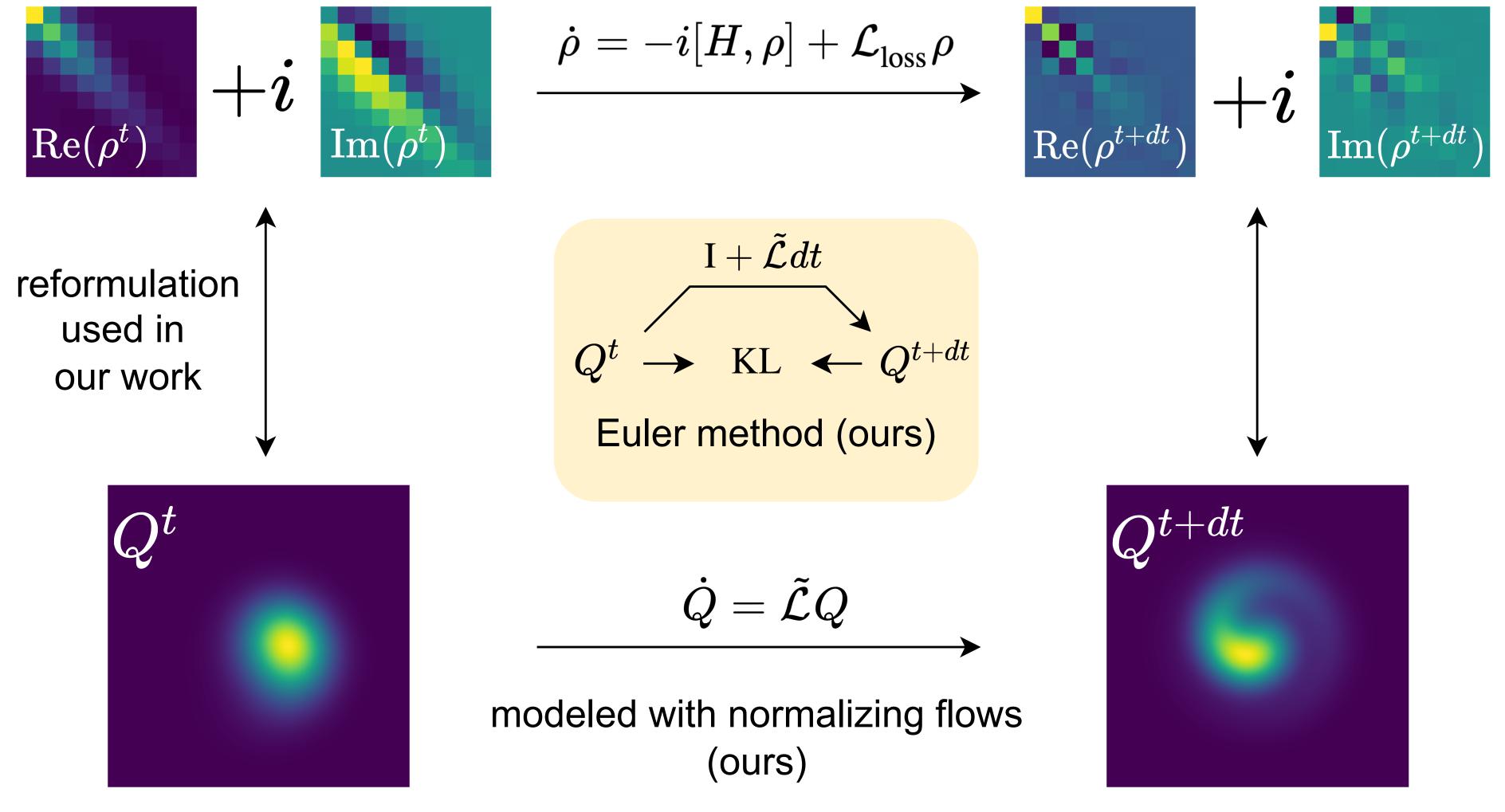


- 1. Convert EOM and ρ to Q Function
- 2. Model Q with a normalizing flow



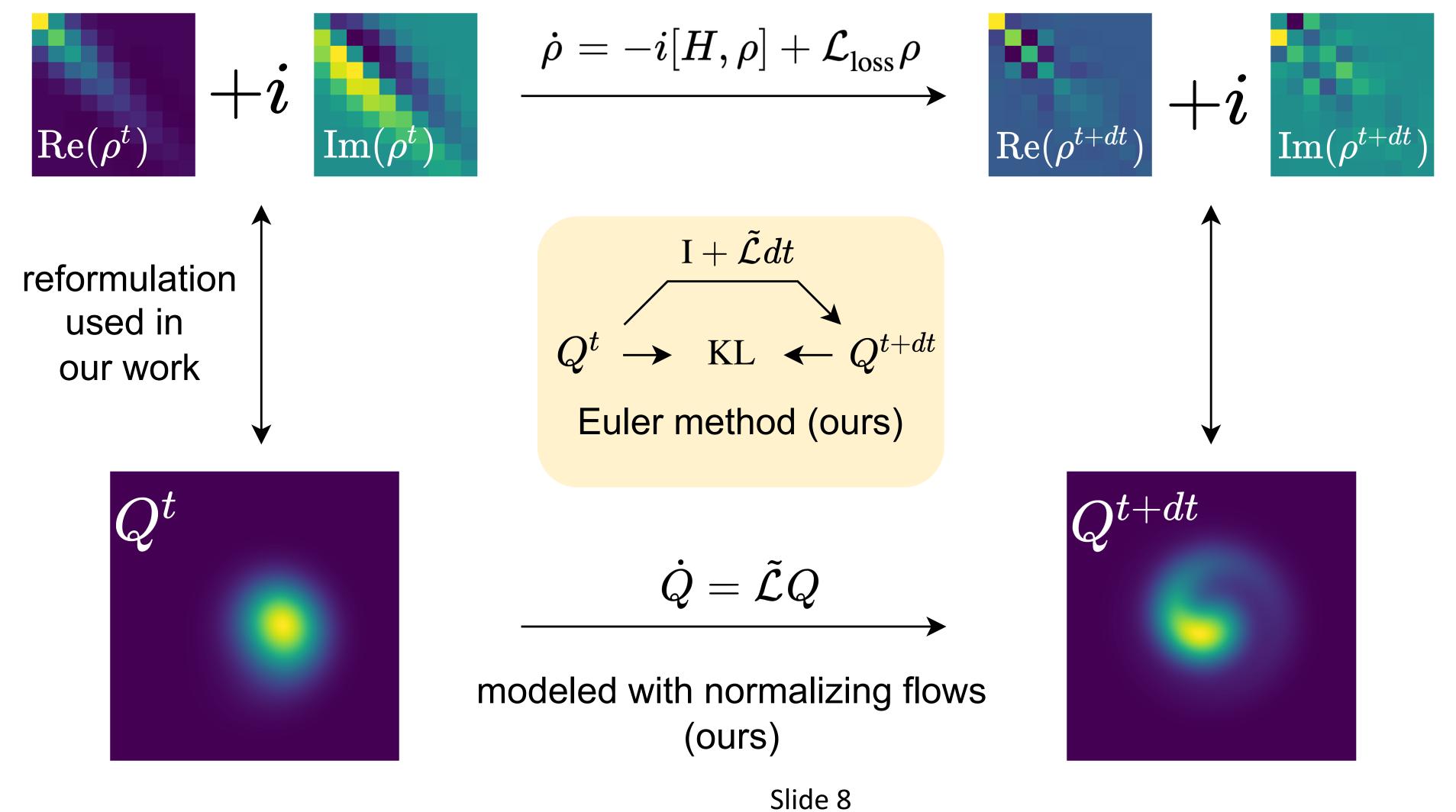
3. Evolve flow with Euler/TDVP

- 1. Convert EOM and ρ to Q Function
- 2. Model Q with a normalizing flow



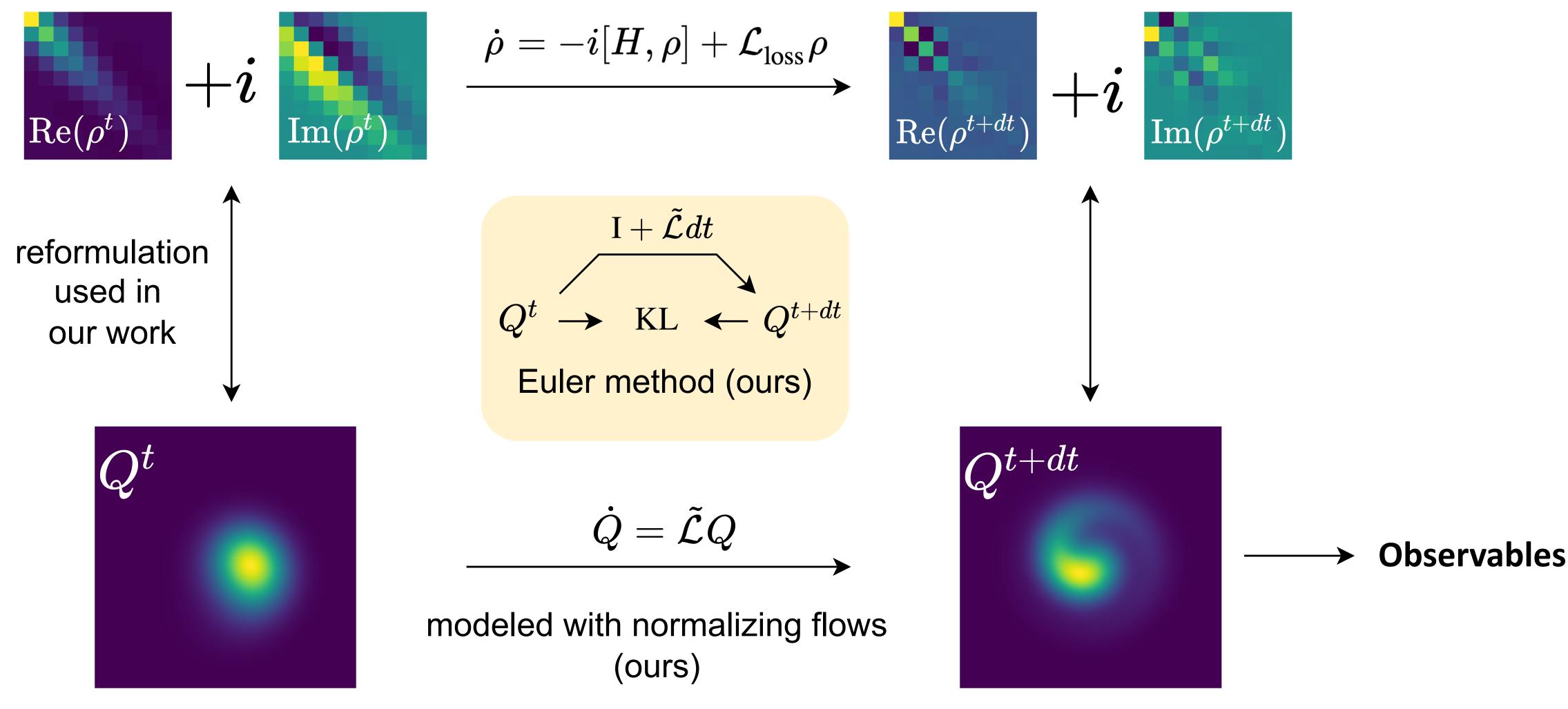
3. Evolve flow with Euler/TDVP

- 1. Convert EOM and ρ to Q Function
- 2. Model Q with a normalizing flow



- 3. Evolve flow with Euler/TDVP
- 4. Sample Q to compute observables

- 1. Convert EOM and ρ to Q Function
- 2. Model Q with a normalizing flow



Slide 8

- 3. Evolve flow with Euler/TDVP
- 4. Sample Q to compute observables

Q-Flow Contributions, Part 1

Establish Connection to Generative Modeling:

- Model continuous quantum systems with the Husimi Q function
- Q is a (quasi)probability distribution —> generative modeling
 Q-Flow will continue to improve as generative models improve

Novel Methods for Solving Complex PDEs with Normalizing Flows:

- New Stochastic Euler-KL method evolves normalizing flows according to EOM
 Can also use Time Dependent Variational Principle (TDVP)
- Can also use Time Dependent Variational Principle (TDVP)
 Can simulate any PDE for probability distributions (not just quantum systems)

Q-Flow Contributions, Part 2

Demonstration of Scalability and Efficiency:

- Superior performance to benchmarks for Bose-Hubbard systems
- Superior performance to benchmarks in high dimensional Dissipative Harmonic Oscillator Systems

With Q-Flow, the challenge of simulating open quantum systems shifts from high dimensionality to Q function complexity

Q-Function Details

Definition: Definition: $Q(\vec{q}, \vec{p}) = \frac{1}{\pi} \langle \vec{\alpha} | \rho | \vec{\alpha} \rangle, \text{ where } \vec{\alpha} = \vec{q} + i\vec{p} \text{ and } | \vec{\alpha} \rangle = |\alpha_1\rangle \otimes \cdots \otimes |\alpha_n\rangle$

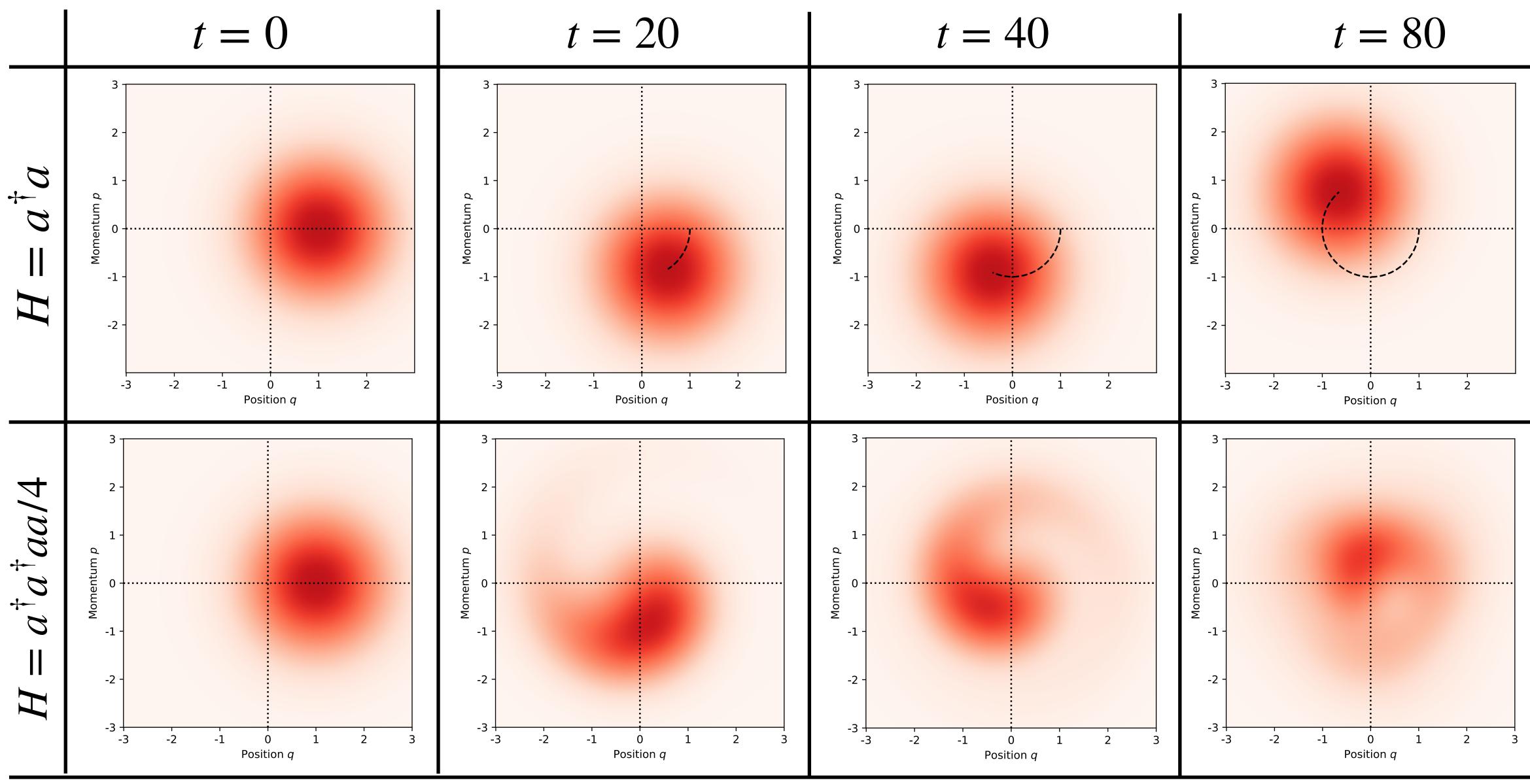
Normalization: $\int Q(\vec{q}, \vec{p}) \, \mathrm{d}\vec{q} \, \mathrm{d}\vec{p} = 1$

 $\forall \vec{q}, \vec{p}, \quad Q(\vec{q}, \vec{p}) \ge 0$ **Positivity:**

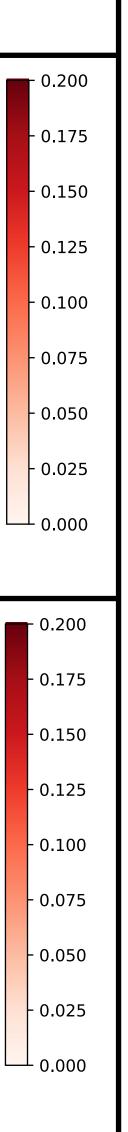
Q-Function is a (quasi)probability distribution!

Husimi Q Function

Coherent states



Husimi Q Function Visualizations



Q Function Properties

Property 1: Q functions and density matrices are 1-1.

Property 2: For every local observable, there exists a Q-Flow representation which can compute the observable efficiently.

Property 3: Any density matrix EOM in composed of raising and lowering operators a^{\dagger} and a can be converted to a Q-Function EOM.

Q-Flow Method: Modeling and Evolving Q

Normalizing Flows to Model Q

Requirements:

Model Q, a probability distribution

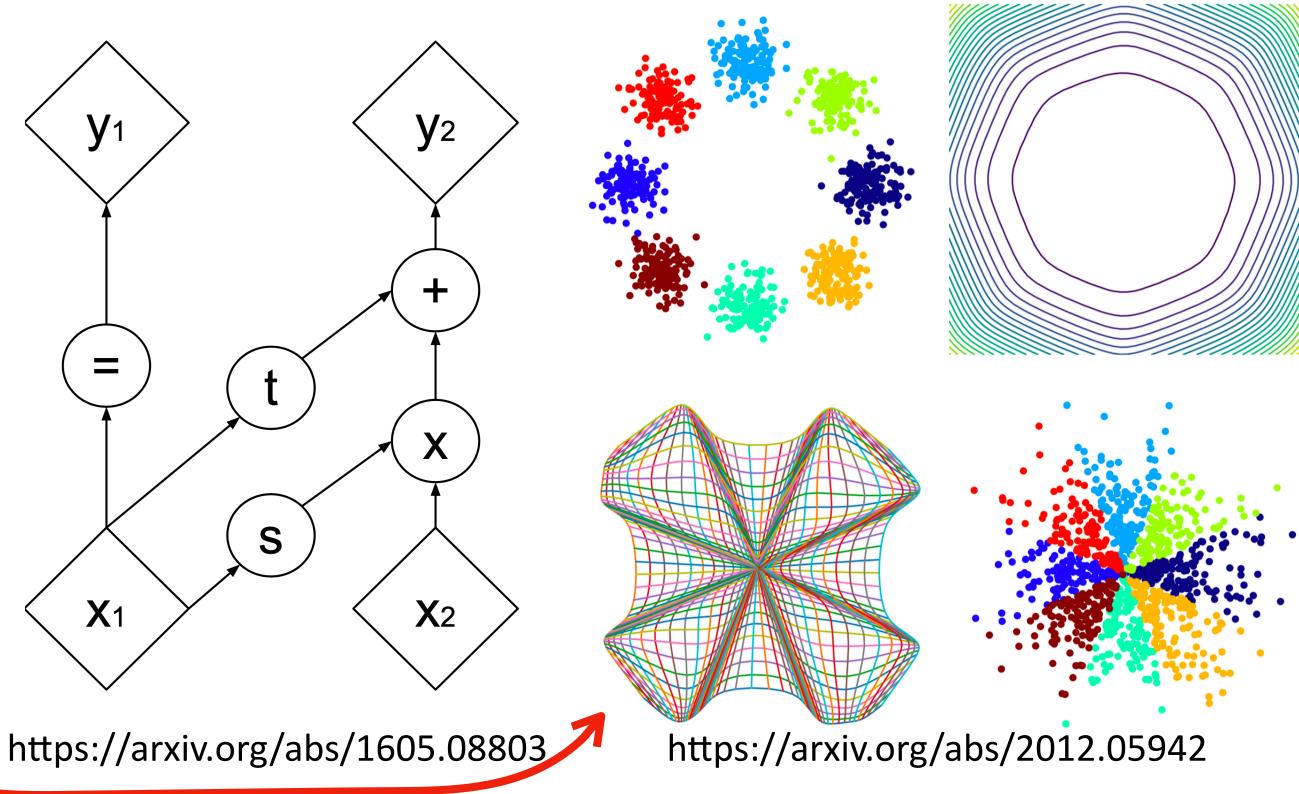
dv

- Sample from and evaluate Q
- Q must be differentiable

Solution — Normalizing Flows:

- RealNVP
- **Convex Potential Flows**

$$p_Y(y) = p_X(f_\theta^{-1}(y)) \bigg|^{-1}$$



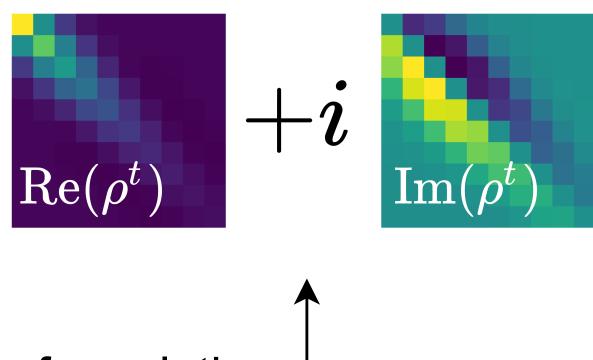
Modeling Initial Q Function — Pretraining

Problem: Fit a known distribution Q_{init} using a normalizing flow Q_{θ}

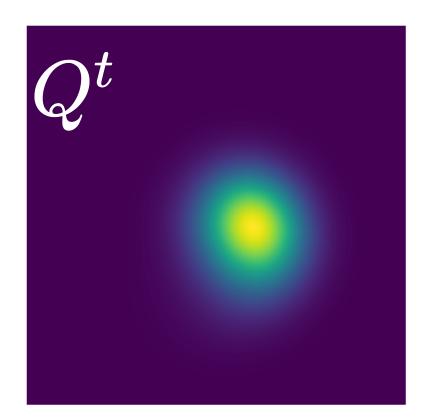
Solution: Train using KL divergence loss

Step 1 — sample from Q_{init} (MCMC): $\nabla_{\theta} KL = -\frac{1}{N} \sum_{x \sim Q_{init}} \nabla_{\theta} \ln Q_{\theta}(x)$

Step 2 — sample from Q_{θ} : $\nabla_{\theta}KL = -\frac{1}{N} \sum_{x \sim Q_{\theta}} \frac{Q_{init}(x)}{Q_{\theta}(x)} \nabla_{\theta} \ln Q_{\theta}(x)$



reformulation used in our work

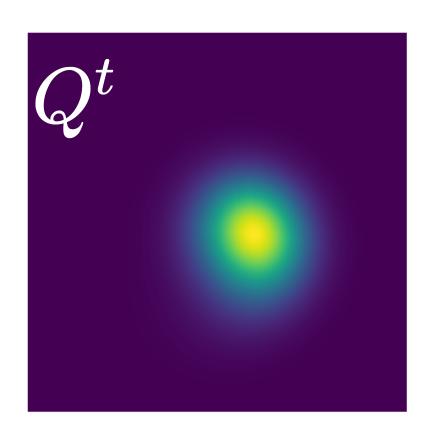


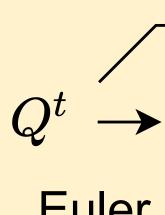
Q Function Time Evolution: Stochastic Euler Method

Euler Method: using $\dot{Q} = \tilde{\mathcal{L}}Q$, repeatedly evolve by dt: $Q^{t+dt} = Q^t + \tilde{\mathcal{L}}Q^t dt$

To model Q_{θ}^{t+dt} , train a new flow using a KL loss between Q_{θ}^{t+dt} and $Q^t + \tilde{\mathcal{L}}Q^t dt$:

$$KL(Q_{\theta}^{t+dt}||Q_{\theta}^{t} + \tilde{\mathcal{L}}Q_{\theta}^{t}dt) = \int Q_{\theta}^{t+dt} \ln \frac{Q_{\theta}^{t+dt}}{Q_{\theta}^{t} + \tilde{\mathcal{L}}Q_{\theta}^{t}dt}$$



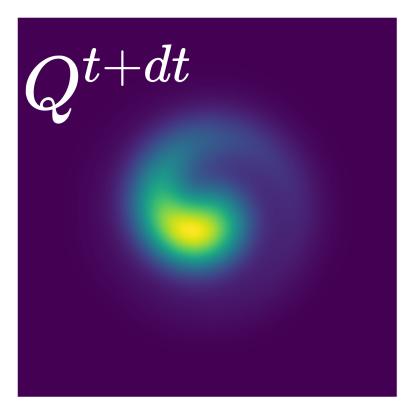


$$I + \tilde{\mathcal{L}} dt$$

$$KL \leftarrow Q^{t+dt}$$

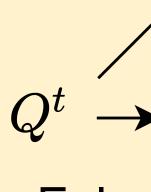
Euler method (ours)

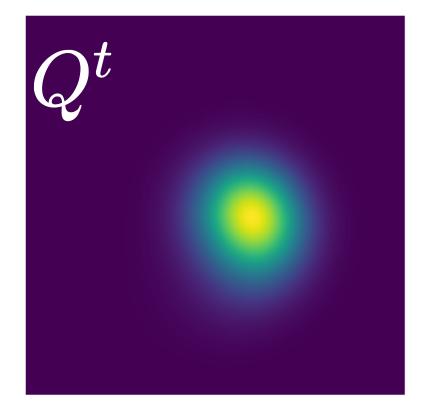
$$\dot{Q}= ilde{\mathcal{L}}Q$$



Q Function Time Evolution: TDVP Method

Computes $\Delta \theta$ directly: $\theta + \Delta \theta$ parametrizes the flow closest to $Q^t + \tilde{\mathcal{L}}Q^t dt$ for $\Delta \theta = \dot{\theta} dt$ and $S_{kk'} \dot{\theta}_{k'} = F_k$, where $S_{kk'} = \mathbb{E}[(\partial_{\theta_k} \ln Q)(\partial_{\theta'_k} \ln Q)]$ $\partial_t \ln Q = (\partial$

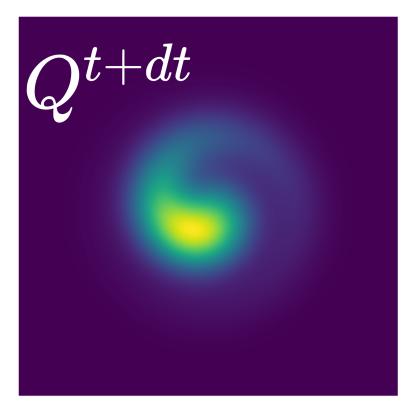




$$P[Q) \quad F_k = \mathbb{E}[(\partial_{\theta_k} \ln Q)(\partial_t \ln Q)]$$
$$D_t Q = (\tilde{\mathcal{L}}Q)/Q$$

Euler method (ours)

$$\dot{Q}= ilde{\mathcal{L}}Q$$

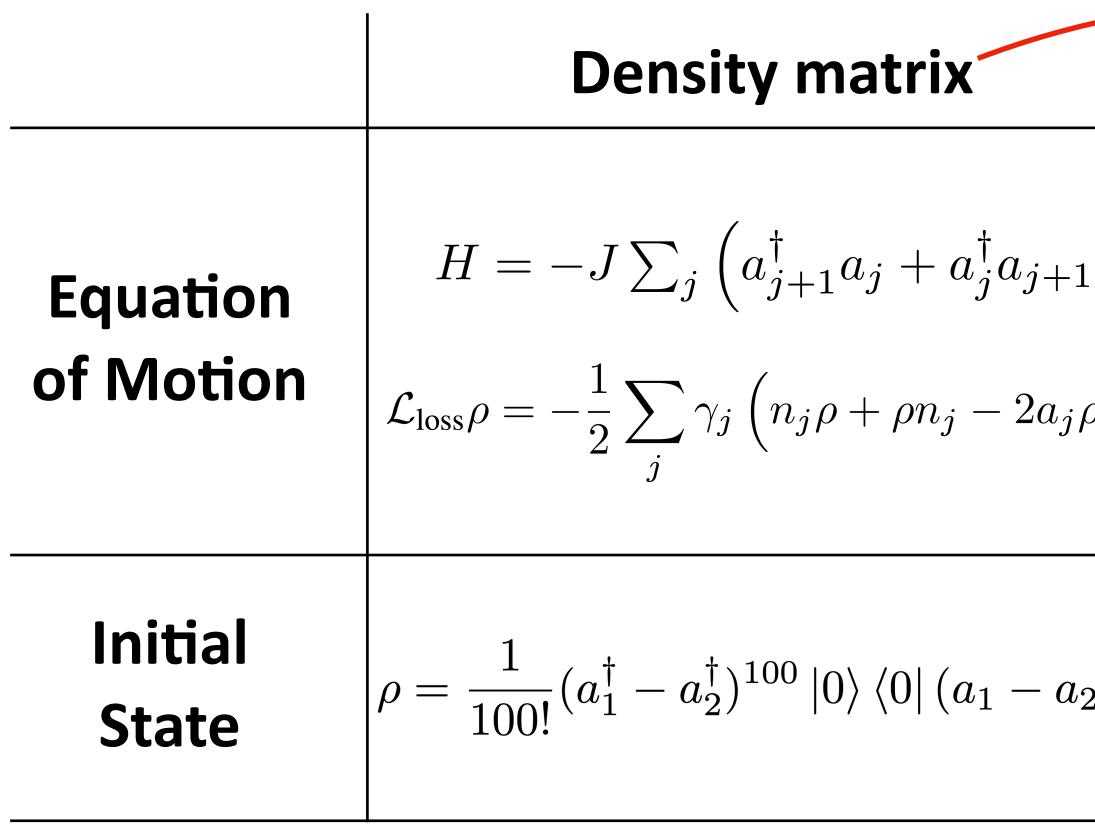


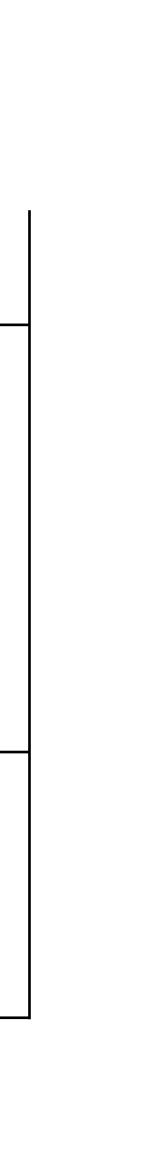
Results: Dissipative Bose-Hubbard

Motivation for Experiment:

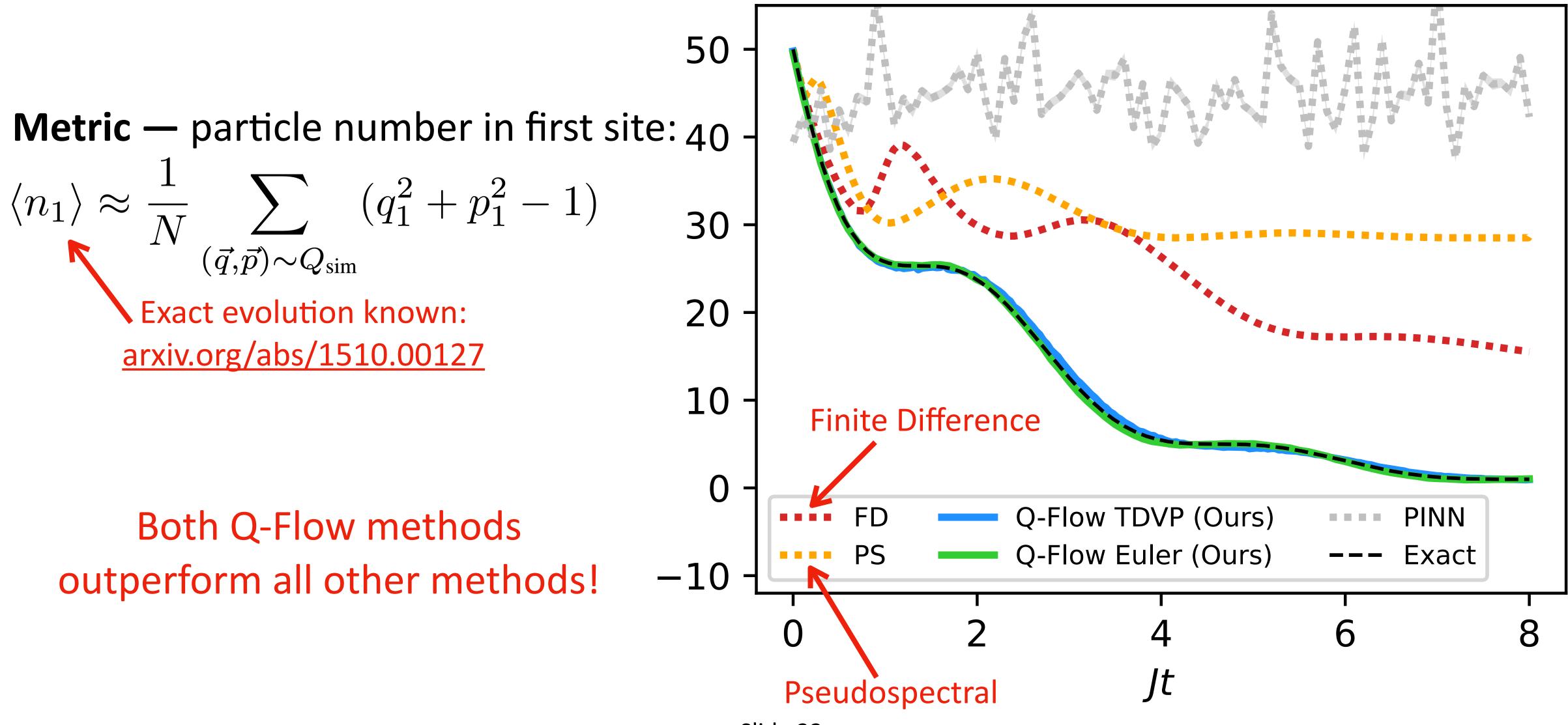
Real-world applications: Bosonic analog of Fermi-Hubbard, model for superconductors **Complex inter-site interactions:** difficult to model

Bose-Hubbard to Q Function Formalism





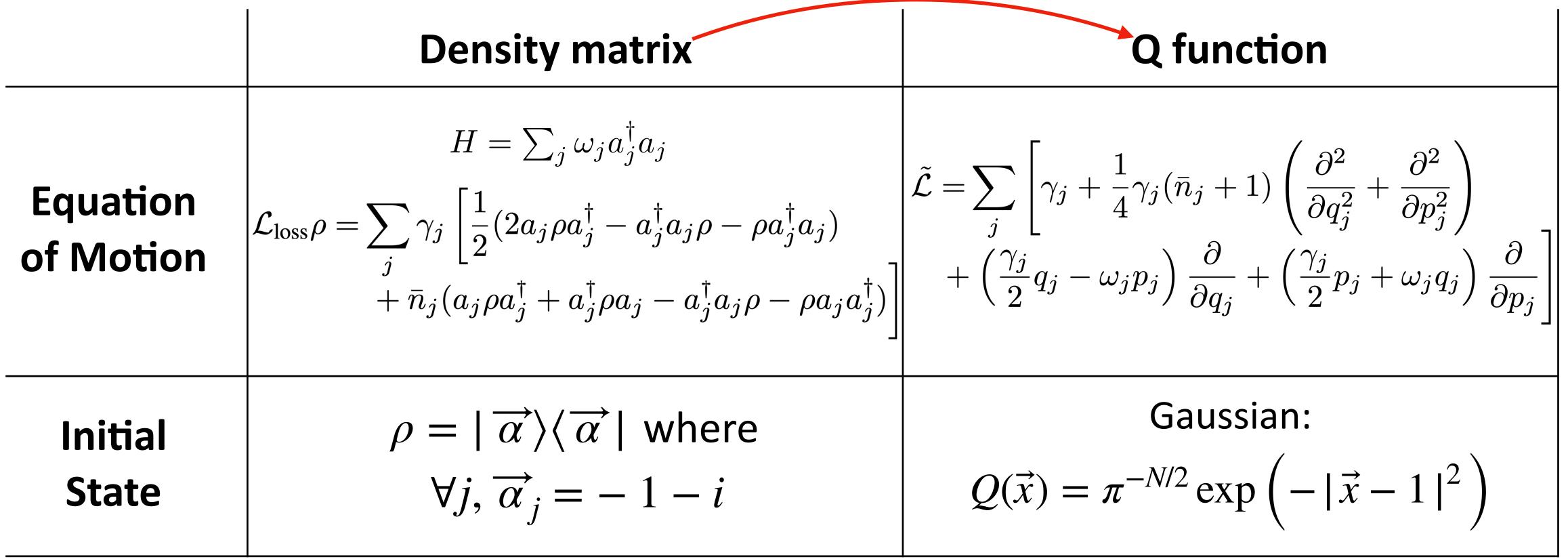
Results: Particle Number Evolution

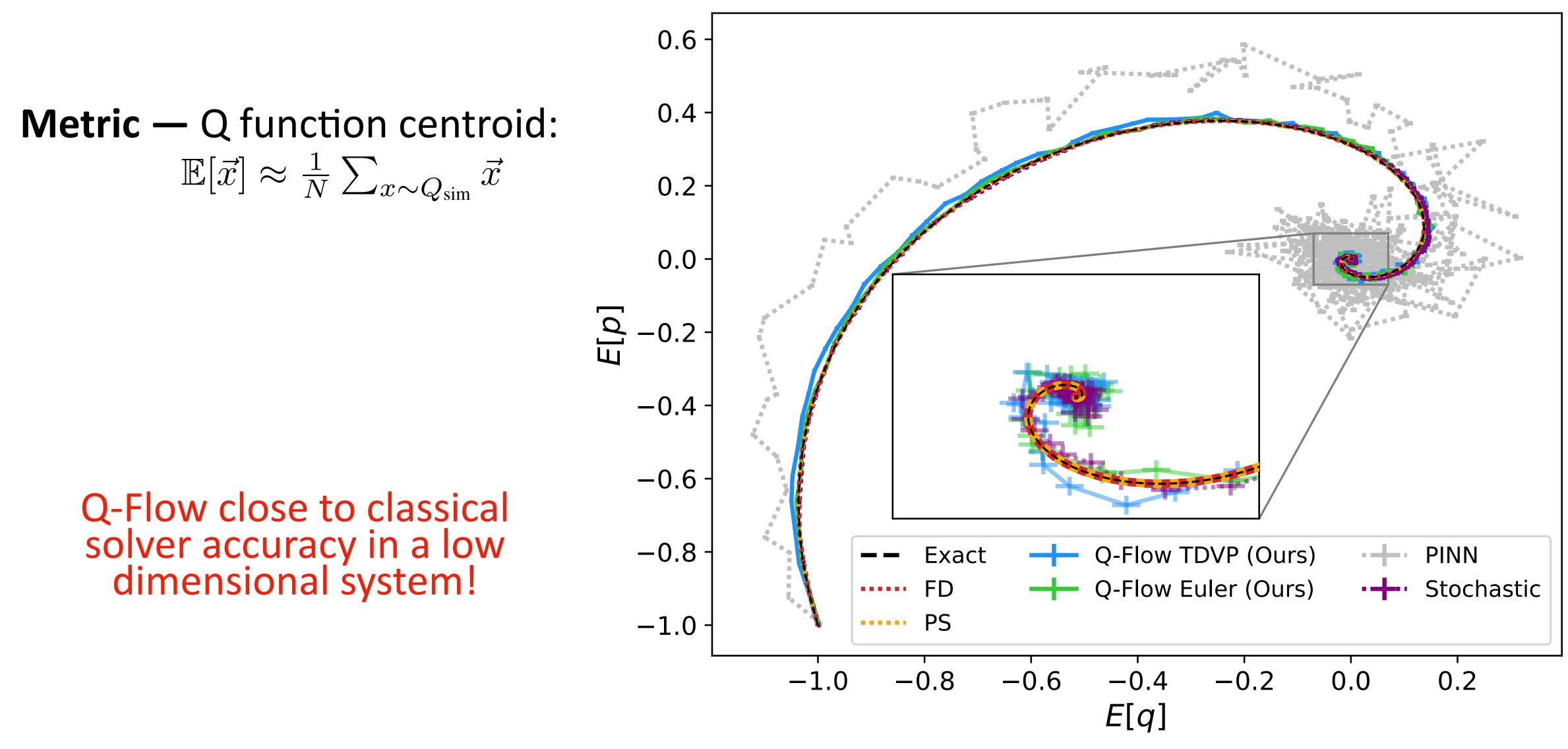


Results: Dissipative Harmonic Oscillator

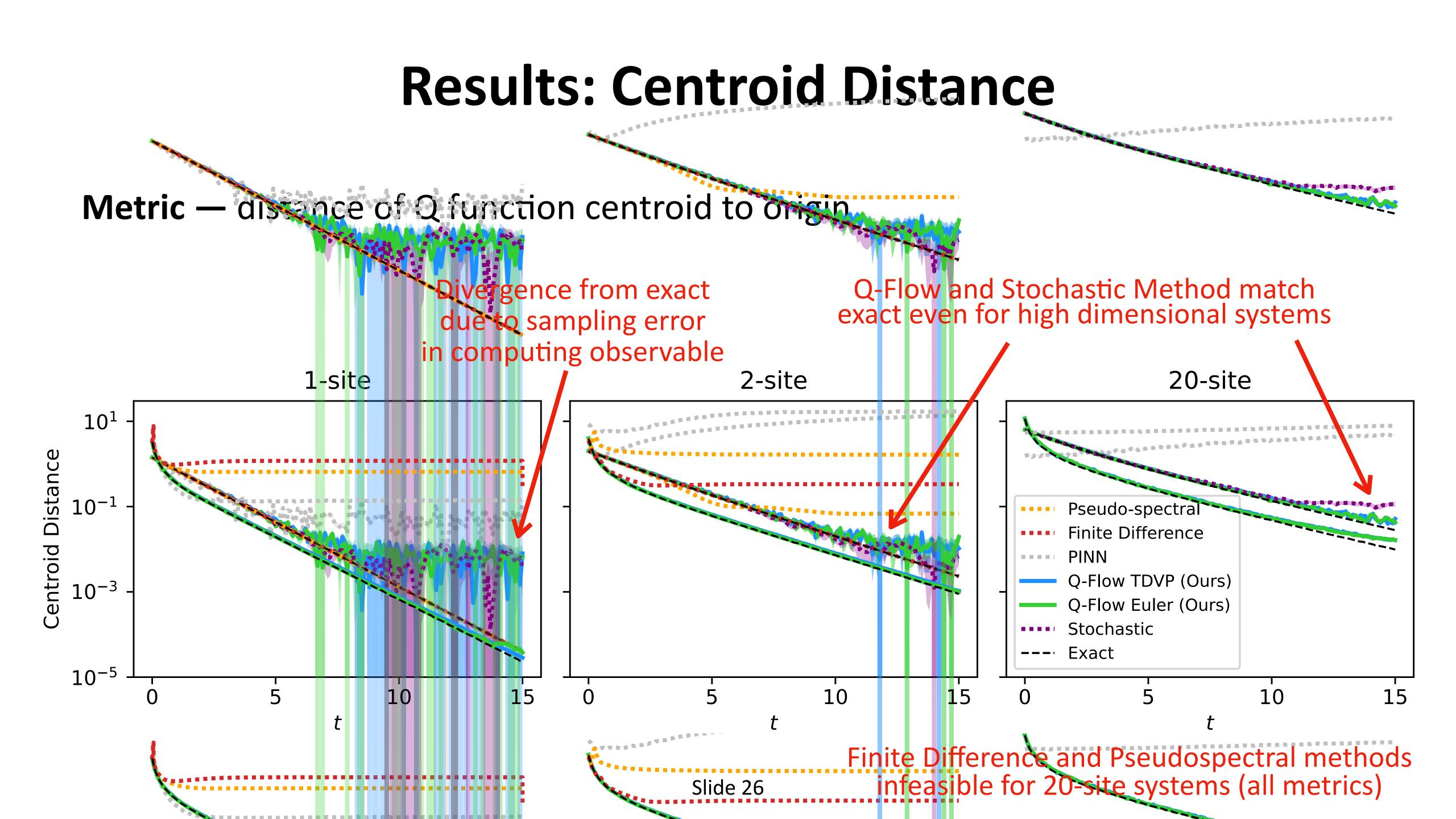
Motivation for Experiment: Exact solution known: useful for testing high-dimensional systems

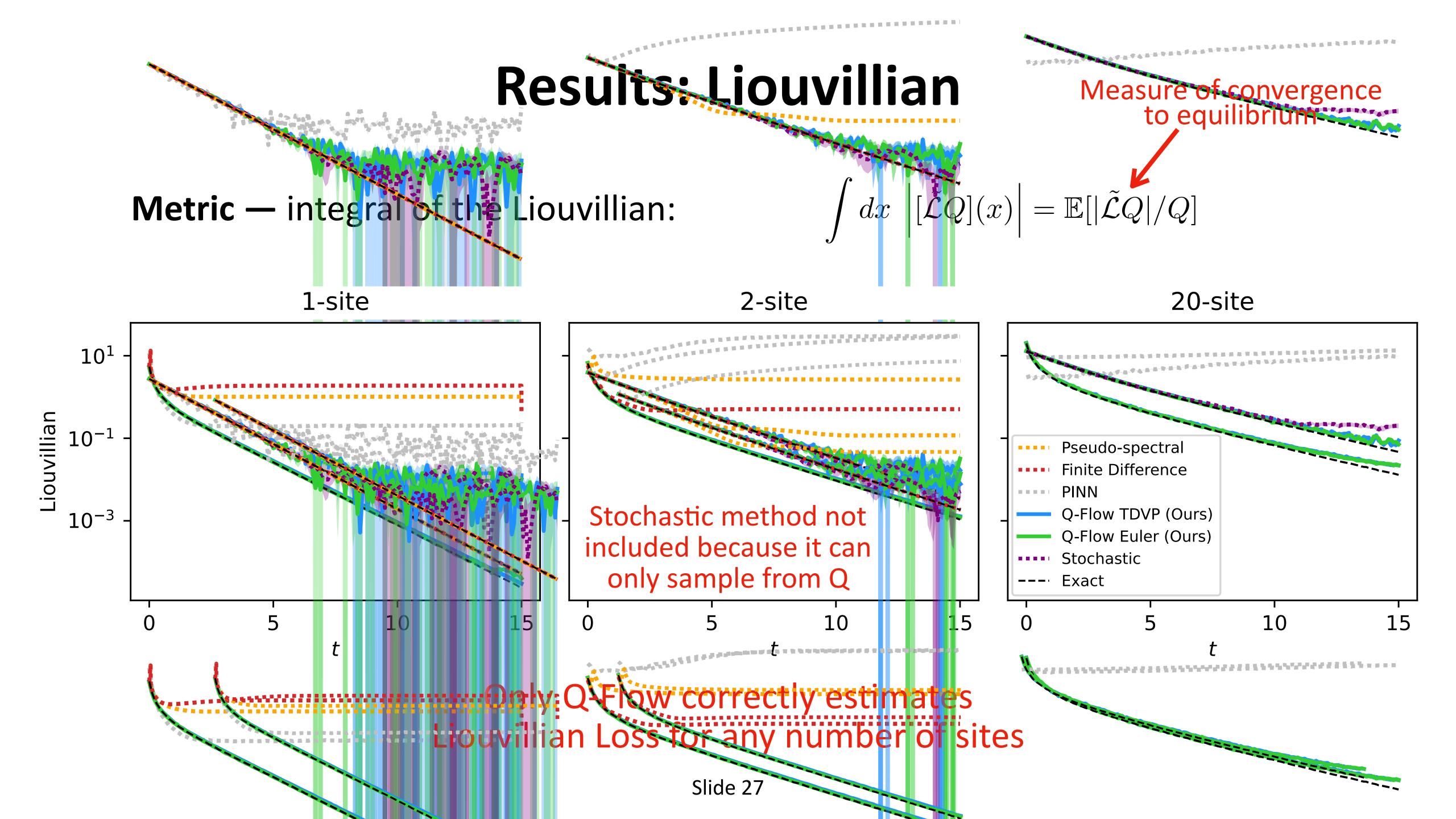
Dissipative Harmonic Oscillator to Q Function Formalism





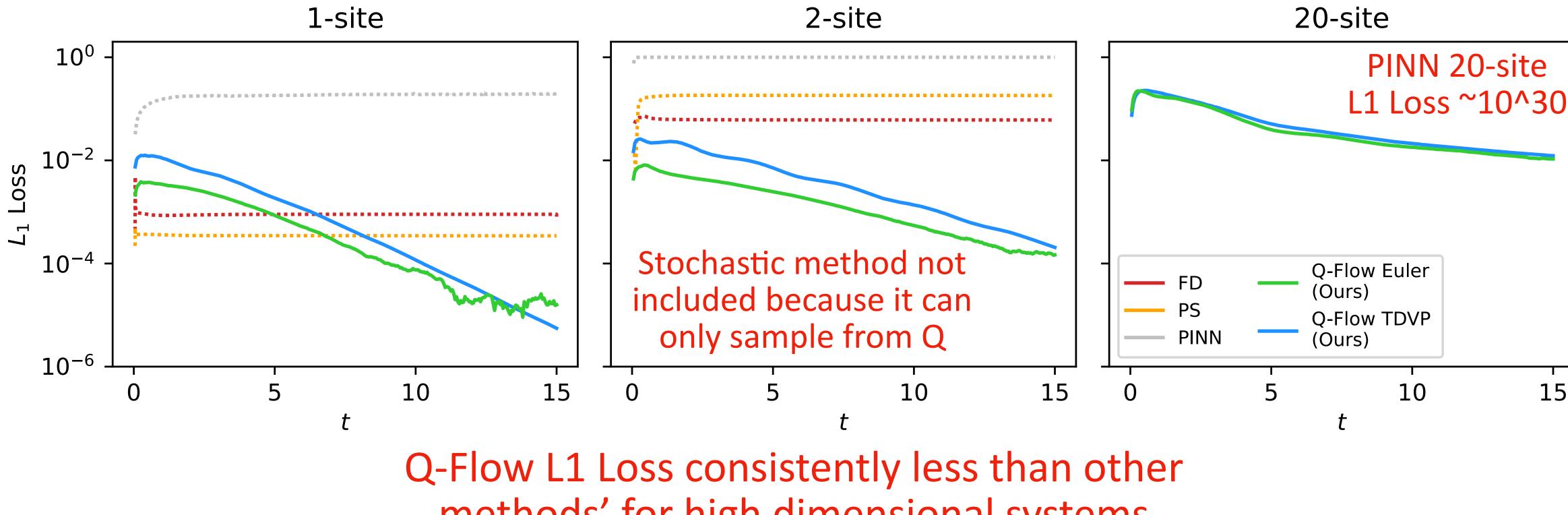
Results: 1 Well Centroid Evolution





Results: L1 Loss

Metric — L1 loss between simulated and



exact Q:
$$L_1[Q_{sim}, Q_{exact}] \equiv \int d^d x |Q_{sim}(x) - Q_{exact}|$$

methods' for high dimensional systems

Conclusion

- Developed Q-Flow:
 - Connects off-the-shelf generative models to open quantum systems
 - Novel method for solving complex PDEs with Normalizing Flows
 - Demonstrated scalability and efficiency
 - Improved performance relative to standard PDE solvers in high-

dimensional systems and systems with complex interactions

- With Q-Flow, the challenge of simulating open quantum systems shifts from high dimensionality to Q function complexity
- Q-Flow will continue to improve as generative models improve!

Thank you!