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Overview of Problem:
Open Quantum Systems
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Open Quantum Systems

Definition: any quantum system that
interacts with the environment

Applications:
® Fundamental science
® Phase transitions

® Quantum technology
® Quantum computers
® Superconductors
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Simulating Open Quantum Systems (0OQS)

Environment
Density matrix p:
® Represents the state of an OQS e
® Square complex-valued matrix \/ ALp, \/ .

o Tr(p) =1 >

~
. . Iﬁloss
Equation of Motion (EOM): 7 >
e p evolves according to the differential equation:
p = /,Ep = —Z/[,H ,p| + %mﬂ
superoperator Hamiltonian superoperator
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Challenges Simulating Open Quantum Systems

Curse of Dimensionality: Challenging Parametrization:
® Density matrix exponential in ® pis complex valued and Tr(p) = 1
system size e Complex dynamics and interactions
Large systems infeasible for Difficult to model with Neural Networks
conventional solvers

Past neural approaches
limited to spin systems!
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Q-Flow Overview
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Q-Flow Procedure
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Q-Flow Procedure
1. Convert EOM and p to Q Function

o P — —?:[H, P] + Elossp . .
T > +1
Re(p") Im(p") Re(p'*) Im(p
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Q-Flow Procedure
1. Convert EOM and p to Q Function

_ o P — —?:[H, P] + ‘Clossp . .
11 > +-1
Re(p") Im(p") Re(p"* ) Tm(p

A

reformulation
used In

our work

Qt
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Q-Flow Procedure
1. Convert EOM and p to Q Function

H P T ‘Clossp
—|—z
t—l—dt t—l—dt
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our work
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Q-Flow Procedure
1. Convert EOM and p to Q Function
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Q-Flow Procedure

1. Convert EOM and p to Q Function
2. Model Q with a normalizing flow

n . p — _i[Ha P] T £lossp . . .
+1 g T
Re(p') Im(p") Re(o ) lald
. A

reformulation
used In

our work

Qt
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Q-Flow Procedure

1. Convert EOM and p to Q Function
2. Model Q with a normalizing flow

A A
reformulation
used In
our work
4 \ 4

Qt
Q=LQ

>

modeled with normalizing flows
(ours)
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Q-Flow Procedure

1. Convert EOM and p to Q Function 3. Evolve flow with Euler/TDVP
2. Model Q with a normalizing flow

A A
reformulation
used In
our work
4 \ 4

Qt
Q=LQ

>

modeled with normalizing flows
(ours)
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Q-Flow Procedure

1. Convert EOM and p to Q Function 3. Evolve flow with Euler/TDVP
2. Model Q with a normalizing flow

reformulation
used In / \

our work Q" — KL <« Q"%

v Euler method (ours) v

Qt
Q=LQ

>

modeled with normalizing flows
(ours)
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Q-Flow Procedure

1. Convert EOM and p to Q Function 3. Evolve flow with Euler/TDVP
2. Model Q with a normalizing flow 4. Sample Q to compute observables

reformulation
used In / \

our work Q" —> KL <« Q"™

v Euler method (ours) v

Qt
Q=LQ

>

modeled with normalizing flows
(ours)
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Q-Flow Procedure

3. Evolve flow with Euler/TDVP
4. Sample Q to compute observables

1. Convert EOM and p to Q Function
2. Model Q with a normalizing flow

. it I+ Ldt
reformulation
used In . / \ Lot
our work Q" > KL «—Q
v Euler method (ours)

Qt

Q=LQ

>

modeled with normalizing flows

(ours)
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Q-Flow Contributions, Part 1

Establish Connection to Generative Modeling:
® Model continuous quantum systems with the Husimi Q function
® Qs a (quasi)probability distribution —> generative modeling
Q-Flow will continue to improve as generative models improve

Novel Methods for Solving Complex PDEs with Normalizing Flows:
® New Stochastic Euler-KL method evolves normalizing flows according to EOM
® Can also use Time Dependent Variational Principle (TDVP)

Can simulate any PDE for probability distributions (not just guantum systems)
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Q-Flow Contributions, Part 2

Demonstration of Scalability and Efficiency:

® Superior performance to benchmarks for Bose-Hubbard systems

® Superior performance to benchmarks in high dimensional Dissipative
Harmonic Oscillator Systems

With Q-Flow, the challenge of simulating open quantum systems shifts from high
dimensionality to Q function complexity
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Q-Function Details
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Husimi Q Function

Definition:
- - 1 e —_ — - = —_
Q(q,p)=;<a |p| a),where  =g+ip and | @) =|a;))® - Q® |,)

\ 7

Coherent states

Normalization: jQ(@,ﬁ) dgdp = 1
Positivity: Vg,p, Q(q,p) >0
Q-Function is a (quasi)probability distribution!
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Q Function Properties

Property 1: Q functions and density matrices are 1-1.

Property 2: For every local observable, there exists a Q-Flow representation
which can compute the observable efficiently.

Property 3: Any density matrix EOM in composed of raising and lowering

operators a’ and a can be converted to a Q-Function EOM.
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Q-Flow Method: Modeling and Evolving Q
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Normalizing Flows to Model Q

Requirements:

® Model Q, a probability distribution
e Sample from and evaluate Q

® Q must be differentiable

Solution — Normalizing Flows:
® ReaINVP —m—m— — >
® Convex Potential Flows

ofy ' (y)
0y

py(») = px(f5 ' ()

https://arxiv.org/abs/1605.08803 https://arxiv.org/abs/2012.05942
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Modeling Initial Q Function — Pretraining

Problem: Fit a known distribution Q, .. using - .
a normalizing flo 1
g flow & Re(p") .

Solution: Train using KL divergence loss

A
reformulation
Step 1 — sample from Q. .. (MCMC): used in
1 our work
VKL = — — V,In O (x v
’ ~ 2, Voln Q)
X~ Qi Qt
Step 2 — sample from Qy: .
1 Qinit(x)
VoKL = — — Vyln O, (x
’ v & O I

Slide 17



Q Function Time Evolution: Stochastic Euler Method
Euler Method: using Q = £, repeatedly evolve by dft: Qt at — Qt + ZQtdt

To model Q?dt train a new flow using a KL loss between Qz % and Qt -+ ZQtdt :

t-+dt
t+dt t+dt o
Ly L dt / In _
[+ Ldt
/ \

Ql —> KL <« Q¥

Euler method (ours)

Qt+dt

-~

Q=LQ

> -
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Q Function Time Evolution: TDVP Method

Computes Ad directly: @ + A8 parametrizes the flow closest to Q + LQ!dt for
A = thand Skkj’é’k}’ — Fk' where

St = El(05, nQ)(09, Q)] F, = E[(9p, nQ)(3; n Q)]
9 nQ = (8:Q)/Q = (£Q)/Q

[+ Ldt

/ N

Qf —> KL <« Qttdt

Euler method (ours)

Qt+dt

> -
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Results: Dissipative Bose-Hubbard

Motivation for Experiment:
Real-world applications: Bosonic analog of Fermi-Hubbard, model for superconductors

Complex inter-site interactions: difficult to model
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Bose-Hubbard to Q Function Formalism

—

Density matrix Q function
g i i F A (N (R I (P A
Equation R (aj“aj ajajH) “e\a\og "apr) T2 \Vag T ap;
of Motion 1 ; G, % 9 9
Loss — T 5 A\ nip+ pn; —2a;pa + J . : - D ,
loss/ zzj:%( ib+ pn; = 2a;pa] zj:(pﬂ“aqj I op; 1 8g54 qfapjﬂ)

2 27100
CL_{ L ag)IOO ‘O> <O| (al o az)l()() Q _ [(QI _ QQ) + (pl _p2) ] 6_(q%+p%+q§+p§)
72 - 2100 . 100!

Initial ! (
State 7~ 100!
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Results: Particle Number Evolution

50

Metric — particle number in first site: 40

1
<TL1> ~ N Z (Q% _I_p% - 1) 30

\ (iaﬁ)NQsim
Exact evolution known: 20

arxiv.org/abs/1510.00127

10

Finite Difference

o1 .

Both Q-Flow methods ssss FD === Q-Flow TDVP (Ours) PINN
PS === (Q-Flow Euler (Ours) -—— Exact
outperform all other methods! —10
0 2 4 0 8
Pseudospectral Jt
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Results: Dissipative Harmonic Oscillator

Motivation for Experiment:
Exact solution known: useful for testing high-dimensional systems
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Dissipative Harmonic Oscillator

to Q Function Formalism

Density matrix

Q function

H=)_. wja;aj

S 1+ 2505 +1) 7+ 2
Equation 1 N AVREA 2 " gp?
9 . Liossp = Y ; 5(2ajﬂa;—a;ajp—ﬂa;aj) j ! % o, -
of Motion 7 1+ (B - wpm) 0 (ﬁp.+w.q.)i
+ 75 (a;pal + alpa; — ala;p — pajal) 27 ) 9q; - N2 T op;
nitial p=1T)T| where Gaussian:
« —> . - _ — P
State Vi, a;=—1-i Q(X)=7TN/2€XP(—\X—1\ )
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Results: 1 Well Centroid Evolution

0.6 -
Metric — Q function centroid: 0-4- P
2~ 1 — /‘/‘:::
t[x] ~ N z:'Cljf\“Qsim L 0.2 -
Va
0.0 -
/ 2 =
2 —0.2-
—0.4 - _
: .
' -!\.*!i',,- ;
: —0.6 ( ey e
Q-Flow close to classical | '
solyer dCCUracy In d low —0.8 - t == Exact —}— Q-Flow TDVP (Ours) PINN
dimensional System! \ e FD —}— Q-Flow Euler (Ours) -=}-: Stochastic
—1.0- \ PS

1.0 -08 -0.6 -04 -02 0.0 0.2
Elqg]
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Centroid Distance

Results: Centroid Distance

Metric — distance of Q function centroid to origin

Divergence from exact
due to sampling error

in computing observable
1-site 2-site

Q-Flow and Stochastic Method match

exact even for high dimensional systems

20-site

Pseudo-spectral

----- Finite Difference
PINN

m— (Q-Flow TDVP (Ours)

== (Q-Flow Euler (Ours)

----- Stochastic

--- Exact

0 5 10
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Finite Difference and Pseudospectral methods

infeasible for 20-site systems (all metrics)




Liouvillian

Results: Liouvillian Measure of convergence

to equilibrium

/

Metric — integral of the Liouvillian: /da’: L£LQ](z)| = E[|£Q]/Q]

1-site

2-site 20-site

lllllllllllllllllllllllllllllllllllllllll

Pseudo-spectral
----- Finite Difference
PINN

Stochastic method not —— Q-Flow TDVP (Ours)
= (Q-Flow Euler (Ours)

ncluded becauseitcan | |.... ctochastic
only sample from Q —-- Exact

-
~~~
-_y
-
~~

0 5 10 15 0 5 10 15 0 5 10 15

t t

Only Q-Flow correctly estimates

Liouvillian

Loss for any number of sites
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Results: L1 Loss

Metric — L1 loss between simulated and exact Q: L1 |Qsim, Qexact] = / 4%z |Qsim (2) — Qexact()]

1-site 2-site 20-site
0 _ _ .
10 PINN 20-site
VI E NN NN N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EEEEEEEEEEE L1 LOSS ~10A30
% ) ,;:\ |
@)
—
: °
1 Stochastic method not 1__ .y __ Q-FlowEuler
included because it can o (Ours)
Q-Flow TDVP
only sample from Q PINN ™ (Ours)
10_6 | | | | | | | | | | | |
0 5 10 15 0 5 10 15 0 5 10 15
t t t

Q-Flow L1 Loss consistently less than other
methods’ for high dimensional systems
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Conclusion

® Developed Q-Flow:
® Connects off-the-shelf generative models to open quantum systems
® Novel method for solving complex PDEs with Normalizing Flows
® Demonstrated scalability and efficiency
- Improved performance relative to standard PDE solvers in high-
dimensional systems and systems with complex interactions

With Q-Flow, the challenge of simulating open quantum systems
shifts from high dimensionality to Q function complexity

Q-Flow will continue to improve as generative models improve!
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Thank you!
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