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Introduction

We study the “Learning from a Learner” problem in multi-agent setting

-> Goal: Infer the reward functions of other agents that you interact with who are
not experts but are still learning

Learning
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Introduction

Potential applications:

Autonomous cars: Cars from different companies might have different reward
functions e.g safety or energy efficiency, shared environment and no equilibrium
Predict behaviour using recovered reward functions

Fairness: The agents might use the information about other agents’ rewards in
order to learn altruistic behaviours

Decentralization: Use the information about the reward function to decentralize
MARL algorithms that requires reward information e.g. Nash Q-learning



Problem Setting

e N agents acting together in the same environment

e Each agent ; is trying to maximize its own reward R; (general-sum)

e Agents can only observe the state s the actions 21,---,aN performed by the
other agents and their own reward R'(s,a1,...,an)

=> Assume agents are optimizing entropy-regularized objective (individually):

J(x' ny ( (st, ac +a’H( (|st)))

t>0



Modeling other agents while optimizing your own policy

1. Policy Improvements: Multi-Agent Soft Policy Iteration (MA-SPI)

e FEvaluate

Ta(s,a) = R (s,a7) + B | QL (5", ahy) + o (7 (s) ]

e Improve

mt (a'|s) o< exp (% ~§;ﬁ(s, ai))



Modeling other agents while optimizing your own policy

2. Recovering Reward Functions:

e Estimate policies of the other agents from trajectories
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e Infer reward functions

E [ﬁ(&a—iva’i)] = alnvrgew(aﬂs) + oy a‘ﬁIEW“i [DKL(Wi('|5’)|7r;i1ew('|8,))]

s'~P(-|s,a *a')
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Error Bounds

In the paper, we provide error bounds

e Forthe reward recovery in terms of policy estimations
e For the predicted policy improvement in terms of recovered rewards

=> These are novel contributions even in the single-agent case.



Experiments

start A#2 M; . = —d(agent;, goal) + d(agent,, agent ;) fori = 1,2

r' —d(agent,, goal) — d(agent;, agent;) i=1
Mlzet =

A#1 qoal —d(agent,, goal) + d(agent;, agent,;) i =2




Results

Metric Mhom Mhet
PCC #1 | 0.48 + 0.06 | 0.45 + 0.04
PCC #2 | 059 + 0.02 | 0.42 + 0.02
[= 0.54 + 0.03 | 0.44 + 0.01
SCC #1 | 0.44 +0.14 | 051 + 0.02
SCC #2 | 0.60 + 0.04 | 0.43 + 0.03
S 0.52 + 0.06 | 0.47 + 0.01
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