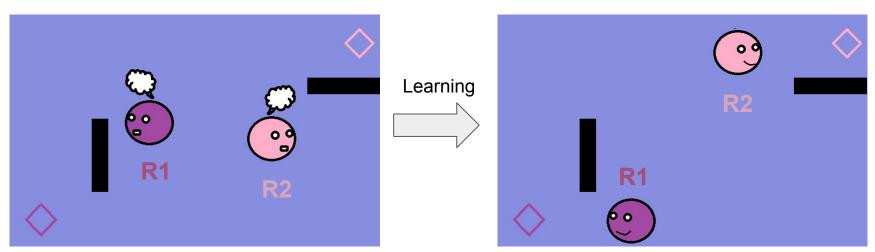
Multi-Agent Learning from Learners

Mine Melodi Caliskan, Francesco Chini, Setareh Maghsudi

Introduction

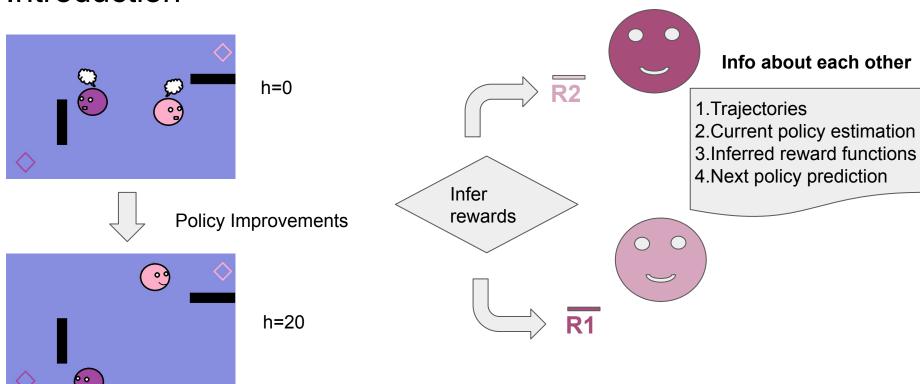
We study the "Learning from a Learner" problem in multi-agent setting

→ Goal: Infer the reward functions of other agents that you interact with who are not experts but are still learning



Jacq, A., Geist, M., Paiva, A., and Pietquin, O. Learning from a learner. In International Conference on Machine Learning, pp. 2990–2999. PMLR, 2019

Introduction



Introduction

Potential applications:

- Autonomous cars: Cars from different companies might have different reward functions e.g safety or energy efficiency, shared environment and no equilibrium
- → Predict behaviour using recovered reward functions
- Fairness: The agents might use the information about other agents' rewards in order to learn altruistic behaviours
- Decentralization: Use the information about the reward function to decentralize
 MARL algorithms that requires reward information e.g. Nash Q-learning

Problem Setting

- *N* agents acting together in the same environment
- Each agent i is trying to maximize its own reward R_i (general-sum)
- Agents can only observe the state s the actions a_1, \ldots, a_N performed by the other agents and their own reward $R^i(s, a_1, \ldots, a_N)$
- → Assume agents are optimizing entropy-regularized objective (individually):

$$\mathcal{J}(\pi^{i}) = \mathbb{E}_{\pi^{i}, \pi^{-i}} \left[\sum_{t \geq 0} \gamma^{t} \left(R^{i}(s_{t}, \boldsymbol{a}_{t}) + \alpha \mathcal{H} \left(\pi^{i}(\cdot | s_{t}) \right) \right) \right]$$

Modeling other agents while optimizing your own policy

1. **Policy Improvements:** Multi-Agent Soft Policy Iteration (MA-SPI)

Evaluate

$$\widetilde{Q}_{ ext{soft}}^{\pi^{i}}(s,a^{i}) = ilde{R}^{i}\left(s,a^{i}
ight) + \gamma \mathbb{E}_{m{\pi}}\left[\widetilde{Q}_{ ext{soft}}^{\pi^{i}}(s',a_{ ext{new}}^{i}) + lpha \mathcal{H}\left(\pi^{i}\left(\cdot|s'
ight)
ight)
ight]$$

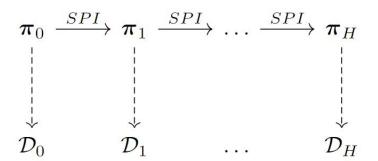
Improve

$$\pi_{
m new}^i(a^i|s) \propto \exp\left(rac{1}{lpha} \widetilde{Q}_{
m soft}^{\pi^i}(s,a^i)
ight)$$

Modeling other agents while optimizing your own policy

2. Recovering Reward Functions:

• Estimate policies of the other agents from trajectories



Infer reward functions

$$\underset{\boldsymbol{a}^{-i} \sim \boldsymbol{\pi}^{-i}}{\mathbb{E}} \left[\overline{R^i}(s, \boldsymbol{a}^{-i}, a^i) \right] = \alpha \ln \pi_{\text{new}}^i(a^i | s) \\ + \alpha \gamma \underset{\boldsymbol{s}' \sim P(\cdot | s, \boldsymbol{a}^{-i}, a^i)}{\mathbb{E}} \left[D_{\text{KL}}(\pi^i(\cdot | s') | \pi_{\text{new}}^i(\cdot | s')) \right]$$

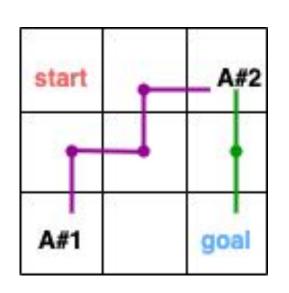
Error Bounds

In the paper, we provide error bounds

- For the reward recovery in terms of policy estimations
- For the predicted policy improvement in terms of recovered rewards

→ These are novel contributions even in the single-agent case.

Experiments



$$M_{\mathrm{hom}}^i = -d(\mathrm{agent}_i, \mathrm{goal}) + d(\mathrm{agent}_i, \mathrm{agent}_j) ext{ for } i = 1, 2$$

$$M_{ ext{het}}^i = egin{cases} -d(ext{agent}_i, ext{goal}) - d(ext{agent}_i, ext{agent}_j) & i = 1 \ -d(ext{agent}_i, ext{goal}) + d(ext{agent}_i, ext{agent}_j) & i = 2 \end{cases}$$

Results

Metric	M_{hom}	$M_{ m het}$
PCC #1	0.48 ± 0.06	0.45 ± 0.04
PCC #2	0.59 ± 0.02	0.42 ± 0.02
Ŷ	0.54 ± 0.03	0.44 ± 0.01
SCC #1	0.44 ± 0.14	0.51 ± 0.02
SCC #2	0.60 ± 0.04	0.43 ± 0.03
Ŝ	0.52 ± 0.06	0.47 ± 0.01

Wed 26 Jul 2 p.m. HST — 3:30 p.m. HST

Exhibit Hall 1 #606