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Motivation

• Reinforcement Learning (RL) tends to be highly sample inefficient
– especially in high‐dimensional or sparse reward environments

• Imitation learning improves the sample efficiency of RL
– train a policy to imitate an expert policy
– methods typically assume expert is optimal or near‐optimal
– in real‐world scenarios, accessing an optimal oracle can be costly or may

not even be possible
– it is often the case that one has access to multiple suboptimal oracles

• Goal: Sample efficient learning from black‐box oracles by combining
their state‐wise expertise
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How can an agent actively learn from multiple black‐box oracles by taking
advantage of their complementary skills to learn a better policy in a

sample‐efficient manner?
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Algorithms for Learning fromMultiple Oracles

• Max‐following π•

π• (a | s) .
= πk∗ (a | s) , k∗ .

= arg max
k∈[K]

V k (s) .

– a greedy policy that follows the best oracle in any state
– better than single‐best oracle π⋆ .

= arg maxπ∈Π V π(d0)

Is there a better baseline?
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Algorithms for Learning fromMultiple Oracles

A natural value function for multiple oracles:

fmax (st)
.
= max

k∈[K]
V k (s) .

✓ Max‐aggregation πmax

πmax (a|s) .
= δa=a⋆ ,where a⋆ = arg max

a∈A
Afmax

(s, a) ,

Afmax
(s, a) = r (s, a) + Es′∼P|s,a[f

max (s′)]− fmax (s)
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Max-aggregation in online learning setting

• Black‐box oracle
× true value function of each oracle is unknown to the learner
✓ reduce IL algorithm to online learning

• We adapted the online loss from Cheng et al. (2020)

ℓn (π;λ)
.
= −(1− λ)HEs∼dπn

[
Afmax,π

λ (s, π)
]

︸ ︷︷ ︸
Imitation Learning Loss

−λEs∼d0

[
Afmax,π

λ (s, π)
]

︸ ︷︷ ︸
Reinforcement Learning Loss

(1)

• Empirical estimate of the ℓn (π, λ) gradient as

∇ℓ̂n (πn;λ) = −HEs∼dπn ,a∼πn(·|s)

[
∇ logπn (a|s)Af̂max,πn

λ (s, a)
]

(2)

– may select suboptimal oracle policy due to bias in the value function
approximator f̂max for ℓn (π, λ)
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Limitations of the prior state-of-the-art

• MAMBA (Cheng et al., 2020)
– Sample inefficiency

caused by uniform policy sampling
a large accumulation of error (regret) when identification fails

– no control over the state uncertainty

✓ Max‐aggregation Active Policy Selection with Active State Exploration
(MAPS‐SE)
– Active policy selection

reduce approximation error

– Active state exploration
control state‐wise uncertainty
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The MAPS-SE Algorithm

• Active policy selection (MAPS)
– define the best oracle πk⋆ as

k⋆ = arg max
k∈[K]

V̂ k(st) +

√
2H2 log 2

δ
Nk(st)

discrete

V̂ k(st) + σk (st) continuous
(a)

• Active state exploration (MAPS‐SE)
– define the state‐wise uncertainty

Γk⋆ (st) as

Γk⋆ (st) =


√

2H2 log 2
δ

Nk⋆ (st)
discrete

σk⋆ (st) continuous
(b)

Active Policy Improvement from Multiple Black-box Oracles

Algorithm 1 Max-aggregation Active Policy Selection with
Active State Exploration (MAPS-SE)

Require: Initial learner policy π1, oracle policies
{πk}k∈[K], initial value functions {V̂ k}k∈[K]

1: for n = 1, 2, . . . , N − 1 do
2: if SE is TRUE then

▷ /* active state exploration */
3: Roll-in policy πn until Γk⋆ (st) ≥Γs, where k⋆

and Γk⋆ (st) are computed via Equation (a) and (b) at
each visited state st.

4: else
5: Roll-in policy πn up to te ∼ Uniform [H − 1]

▷ /* active policy selection */
6: Select k⋆ via Equation (a).
7: Switch to πk⋆ to roll-out and collect data Dn.
8: Update the estimate of V̂ k⋆(·) with Dn.
9: Roll-in πn for full H-horizon to collect data D′

n.
10: Compute gradient estimator gn of ∇ℓ̂n(πn, λ) (9)

using D′
n.

11: Update πn to πn+1 by giving gn to a first-order
online learning algorithm.

strategy in MAMBA, MAPS establishes a more effective
balance between exploration and exploitation when rolling
out the oracle, thereby achieving better sample efficiency. It
should be highlighted that in a single-oracle setting, MAPS
reduces to MAMBA. In the case of multiple oracles, our
experimental results indicate that by applying reasoning to
determine which oracle should be rolled out, MAPS consis-
tently surpasses MAMBA in performance. Next, we present
the details of MAPS for both discrete and continuous state
spaces.

Discrete state space: When the state space is discrete, we
define the best oracle k⋆ to select for a given state st as

k⋆ = argmax
k∈[K]

V̂ k(st) +

√
2H2 log 2

δ

Nk (st)
, (10)

where V̂ k(st), Nk (st) is defined immediately following
Equation 8, and δ is a small-valued hyperparameter com-
monly seen in high-probability bounds. The exploration

bonus term
√

2H2 log 2
δ

Nk(st)
is derived from Lemma D.1, which

captures the standard deviation of the estimated value as
well as our confidence over the estimation.

Continuous state space: In the case of a continuous state
space, we employ an ensemble of prediction models to ap-
proximate the mean value V̂ k(st) and the bonus represent-
ing uncertainty, denoted as σk (st). For each oracle policy
πk ∈ Π, we initiate a set of n independent value prediction
networks with random values, and proceed to train them
using random samples obtained from the oracle’s trajectory

buffer. We formulate the UCB term and estimate the optimal
oracle policy πk⋆ using the following expression:

k⋆=argmax
k∈[K]

V̂ k(st) + σk (st) . (11)

To summarize, we determine the best oracle as

k⋆ = argmax
k∈[K]

{
V̂ k(st) +

√
2H2 log 2

δ

Nk(st)
discrete

V̂ k(st) + σk (st) continuous
(12)

4.2. Active State Exploration

The second limitation of MAMBA is that it doesn’t reason
over which state the exploration should occur. As a result,
MAMBA may choose to roll out an oracle policy in states
for which it already has good confidence on. Therefore,
building upon MAPS, we propose an active state explo-
ration variant of MAPS (MAPS-SE) that decides whether
to continue rolling in the current learner policy or switch
to the most promising oracle, similar to MAPS, based on
an uncertainty measure for the current state. In this way,
MAPS-SE aims to actively select the state in which to
minimize uncertainty.

The bias and variance of the gradient estimates decrease
when fmax (st) returns the best-performing oracle and the
associated uncertainty of the value estimation on state st is
minimized. For a specific state st, MAPS-SE determines
whether to proceed with the roll-out using the selected oracle
policy (Eqn. 12) or continue using the learner’s policy, based
on the optimal oracle’s uncertainty. The means by which
we estimate the oracle’s uncertainty varies depending on
whether the state space is discrete or continuous.

When the state space is discrete, MAPS-SE identifies the
best oracle k⋆ for state st according to Equation 10. In con-
tinuous state space domains, Nk⋆

(st) becomes intractable.
In this case, as in Section 4.1, we use an ensemble of value
networks to measure the uncertainty Γk⋆ (st). MAPS-SE
then measures the exploration bonus associated with this
oracle for state st as Γk⋆ (st)

Γk⋆
(st) =

{√
2H2 log 2

δ

Nk⋆ (st)
discrete

σk⋆
(st) continuous

(13)

MAPS-SE decides whether to roll out the best oracle in
state st according to how confident we are in the selection
of the best oracle. We define the uncertainty threshold
according to Theorem 4 as

Γs=α ·


√√√√ 2H2 log 2

δ

K +
(∑

i
1
∆2

i

)
log
(
K
δ

)
, (14)
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Theoretical Guarantees

The following table summarizes the sample complexity of related methods associated with
identifying the best oracle per state

Selection strategy Sample complexity Γs

Uniform (MAMBA) O
((∑

i
KH2

∆2
i

)
log

(
K
δ

))
—

APS (MAPS) O
(
K +

(∑
i
H2

∆2
i

)
log

(
K
δ

))
—

ASE (MAPS‐SE) O
(
K +

(∑
i
H2

∆2
i

)
log

(
K
δ

))
o

(√
2H2 log(4/δ)

K+(
∑

i H
2/∆2

i ) log(2K/δ)

)

Table: APS (MAPS) achieves a significant reduction in sample complexity of scale
Kcompared to uniform (MAMBA). ASE (MAPS‐SE) exhibits the same sample complexity as
APS, provided that a pre‐set Γs condition is met.
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Experiments- MAPS (APS) -Performance
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(a) Cheetah‐run
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(b) Cartpole‐swingup
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(c) Pendulum‐swingup
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(d) Walker‐walk

Figure: Comparing the performance of MAPS against the three baselines (MAMBA, PPO‐GAE, and the best
oracle) across four environments (Cheetah‐run, Cartpole‐swingup, Pendulum‐swingup, and Walker‐walk), using
the best‐return‐so‐far metric. Each domain includes three oracles, each representing a mixture of policies
pretrained via PPO‐GAE and SAC. The best oracle is depicted as dotted horizontal lines in the figure. The shaded
areas denote the standard error calculated using five random seeds. Except for the Walker‐walk environment,
MAPS surpasses all baselines in every benchmark.
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Experiments-Effect of Active Policy Selection
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(a) MAPS
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Figure: A comparison of the frequency with which (a)MAPS and (b)MAMBA select among a bad (in red),
mediocre (in green), and good (in blue) oracle in a three‐oracle Cheetah‐run experiment. MAPS efficiently
identifies each oracle’s quality as indicated by the frequency with which it queries the good oracle. In contrast,
MAMBA maintains roughly the same selection frequency for the bad, mediocre, and good oracles throughout.
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Experiments- MAPS-SE (ASE) -Performance
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Figure: Left: A demonstration of the benefits of active state exploration in terms of a comparison between the
standard deviation for switch‐state for MAPS‐SE (in blue), MAPS (in orange) and MAMBA (in green) in the
Cheetah‐run environment with the same set of oracles used in Figure 1. under a threshold Γs = 2.5. The
predicted standard deviation is evaluated at the switching state from learner policy to oracle. Right: A comparison
of the best‐return‐so‐far in a multiple oracle set between MAPS‐SE with MAPS and the best oracle baseline on
the Cheetah‐run environment.
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