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To provide a perspective into the nature of CNNs, i.e., how their 
architectural characteristics of CNNs manifest themselves in 
terms of the properties of its loss landscape as given by the 

Hessian rank

Aim of the Work



Hessian Rank, and a question    

Bulk

Outliers

range(H) = {y = H θ : θ ∈ ℝp}Hessian Range

rank(H) = dim(range(H))Hessian Rank

Hij =
∂2ℒ

∂θi ∂θj

Captures pairwise interactions of parameters ( )  

via the second-derivatives of the loss 

θi , θj

ℒ



Bulk

Outliers

range(H) = {y = H θ : θ ∈ ℝp}Hessian Range

rank(H) = dim(range(H))Hessian Rank

Hij =
∂2ℒ

∂θi ∂θj

Captures pairwise interactions of parameters ( )  

via the second-derivatives of the loss 

θi , θj

ℒ

?

Hessian Rank, and a question    



Sagun et. al., 2017

Related Work

Significant extent of degeneracy in 
the Hessian 

Theoretical characterisation for Linear 
Fully-Connected networks (FCNs)

Singh et. al., 2021

rank (Hℒ) = 2q
L

∑
i=1

mi − (L + 1)q2 + q(r + K)

rank (Ho) = q(d + K − q)

rank (Hf) ≤ 2q
L

∑
i=1

mi + 2qs − (L + 1)q2
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Setup and Formalism
Given input ,  a deep CNN  with  hidden layers of weight tensors  ,  

nonlinearity ,  stride , zero padding, with input channels , output channels

x ∈ ℝd0 F L 𝒲l ∈ ℝml × ml−1×kl

σ( ⋅ ) 1 m0 = 1 = K

Shorthands:       and   T(k:l) := T(k) ⋯ T(l) ∀ k > l T(k:l) := T(k)⊤ ⋯ T(l)⊤ ∀ k < l
Also, denote the set of all parameters by   θ := {𝒲1, ⋯, 𝒲L+1}
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Toeplitz framework:    A gentle start

conv(x, w) = Tw ⋅ x =

w1 ⋯ wk 0 ⋯ 0
0 w1 ⋯ wk 0 ⋮
⋮ 0 w1 ⋯ wk 0
0 ⋯ 0 w1 ⋯ wk

x1
⋮
⋮
⋮
xd

w1

x1 xd⋯

w1 wk⋯w1 wk⋯w1 wk⋯w1 wk⋯
* w1 wk⋯

Represent convolution as matrix product with a Toeplitz matrix



Toeplitz Framework:  full-fledged CNNs

T(l) :=
T𝒲(l)

(1,1) ∙ ⋯ T𝒲(l)
(1,ml−1) ∙

⋮ ⋮

T𝒲(l)
(ml,1) ∙ ⋯ T𝒲(l)

(ml,ml−1) ∙

Fθ(x) = 𝒲(L+1) * σ (𝒲(L) * σ (⋯ * σ (𝒲(1) * x)))

Fθ(x) = T(L+1)Λ(L)
x T(L)⋯Λ(1)

x T(1)x
Each of the  is a 

 Toeplitz matrix as  
discussed before

T𝒲l
(i,j)Each of the  is a 

 Toeplitz matrix as  
discussed before

T𝒲l
(i,j)Each of the  is a 

 Toeplitz matrix as  
discussed before

T𝒲l
(i,j)

 contains the activations at layer Λ(l)
x l



Key theoretical results

Theorem 1: Rank of outer-product Hessian

The rank of  for a deep linear CNN, with kernel sizes  and number of filters  is: 

             
 where   denotes the flattened bottleneck dimension.

Ho kl ml

rank(Ho) ≤ min (p, d0 rank (T(2:L+1)) + K rank (T(L:1)) − rank (T(2:L+1)) rank (T(L:1)))
= min (p, qo (d0 + K − qo)) .

qo := min(d0, m1d1, ⋯, mLdL, K)

• If there is no bottleneck within,  rank (Ho) = Kd0

Ho = Ep [∇θF(x)∇θF(x)⊤]



• Block-column independence:  Like in the case of FCNs, simply adding the ranks of the block-
columns of the respective layers, gives the rank of the entire   without introducing any 

looseness in the bound (so, the inequality in eq.  suffices) 

Hf

1

Theorem 2:    Rank of functional Hessian

The rank of the -th column block of  for deep linear CNN, with kernel sizes  and 

number of filters  is:          

for  and where  and  .

l Hf kl

ml rank(H∙l
f ) ≤ min(qf ml−1 dl−1 + qf ml dl − q 2

f , ml ml−1 kl) ,

l ∈ [2,⋯, L] qf := min(qo, s) s := rank(Ω) = rank(E[δx,y x⊤] )
Hence we have that,                                                 (eq. )rank(Hf) ≤

L+1

∑
l=1

rank(H∙l
f ) 1

Ep[∑
c=1

[∂ℓx,y]c ∇2
θFc(x)]Hf =

Key theoretical results



Rank of the loss Hessian grows as

rank (Hℒ) = rank (Ho + Hf) ≤ rank (Ho) + rank (Hf)
Number of parameters grow as

𝒪(m2 ⋅ L ⋅ d0)𝒪(m ⋅ L ⋅ d0)

For typical networks,  and m > > L m > > d0

Hence, rank will show a square root behaviour relative to the number of parameters

Thus generalizing the finding of Singh et. al. (2021) to the case of CNNs

Rank of the loss Hessian can be bounded as 

Key theoretical results



Empirical Results

Rank bounds for increasing # of filters m Rank bounds for increasing filter size k

(Ours)

(Ours)Our theoretical bounds hold with high fidelity for arbitrary sized networks!

• On a variety of datasets: MNIST,  FashionMNIST,  CIFAR10

• For various loss types: MSE,  cross-entropy

min( kernel-sizei, spatial-dimi )



Summary

• Employ an equivalent representation of 
CNNs as composition of  Toeplitz maps

• Natural change:    where 

 

• The square-root trend of rank persists

mi → mi di

di =
di−1 − kernel-sizei + 2 paddingi

stridei
+ 1

This sheds a novel perspective on the nature of CNNs and highlights the degree of  

redundancy inherent in over-parameterized networks.


