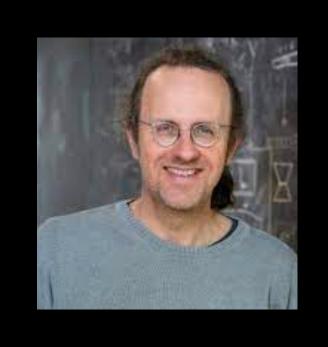
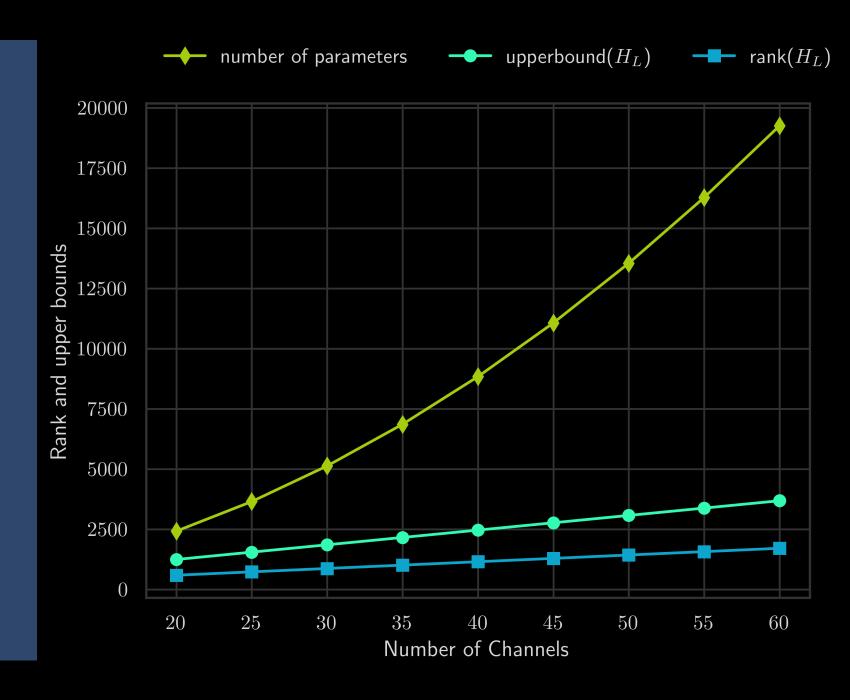
The Hessian Perspective into the Nature of Convolutional Neural Networks

ICML 2023



Sidak Pal Singh

Thomas Hofmann · Bernho



EnHzürich

Bernhard Schölkopf

Aim of the Work

To provide a perspective into the nature of CNNs, i.e., how their architectural characteristics of CNNs manifest themselves in terms of the properties of its loss landscape as given by the Hessian rank

Hessian Rank, and a question

Captures pairwise interactions of parameters (θ_i, θ_i) via the second-derivatives of the loss \mathscr{L}

$$\mathbf{H}_{ij} = \frac{\partial^2 \mathscr{L}}{\partial \theta_i \partial \theta_j}$$

Hessian Range range(H) = { $y = H\theta : \theta \in \mathbb{R}^p$ } Hessian Rank

 $rank(\mathbf{H}) = dim(range(\mathbf{H}))$

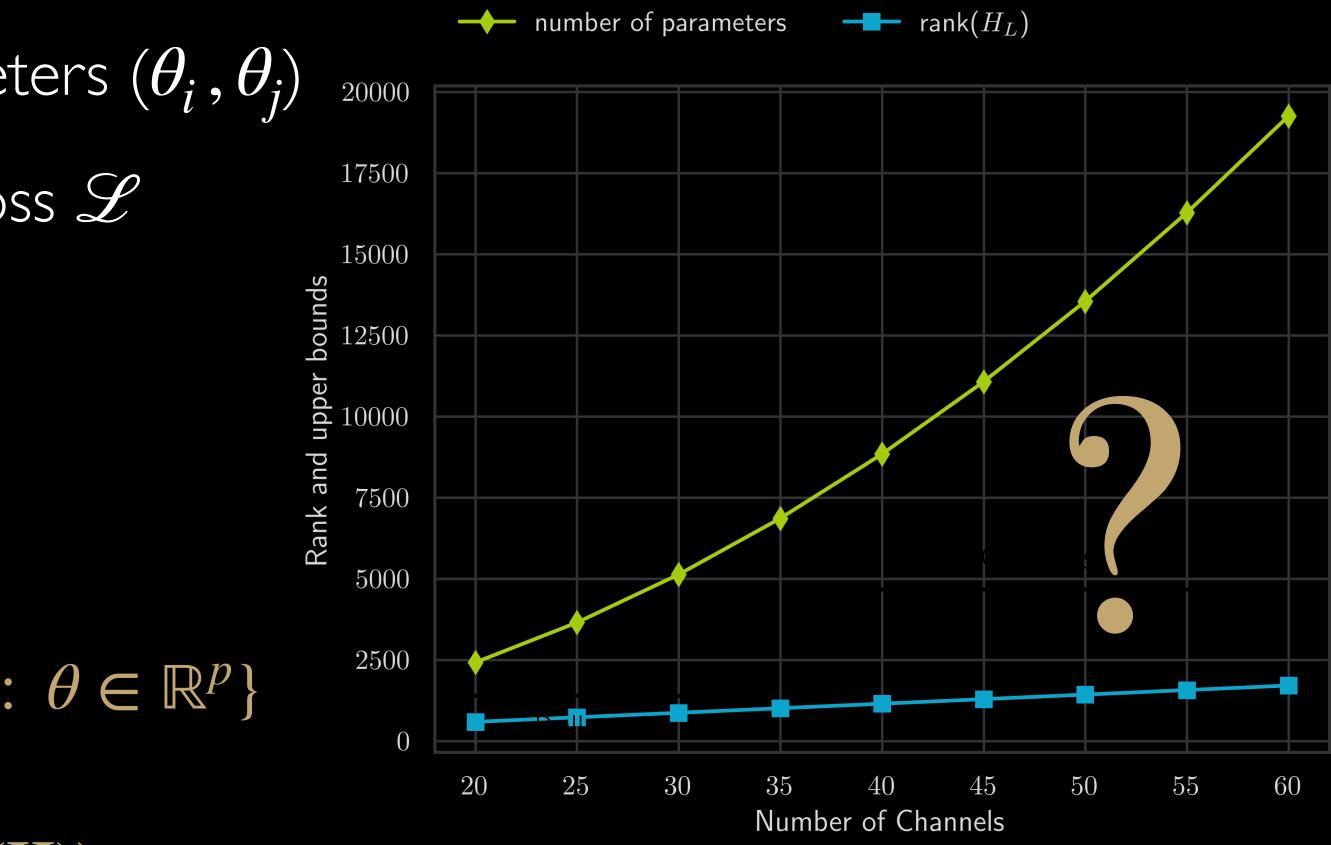
Hessian Rank, and a question

Captures pairwise interactions of parameters (θ_i, θ_i) via the second-derivatives of the loss \mathscr{L}

$$\mathbf{H}_{ij} = \frac{\partial^2 \mathscr{L}}{\partial \theta_i \partial \theta_j}$$

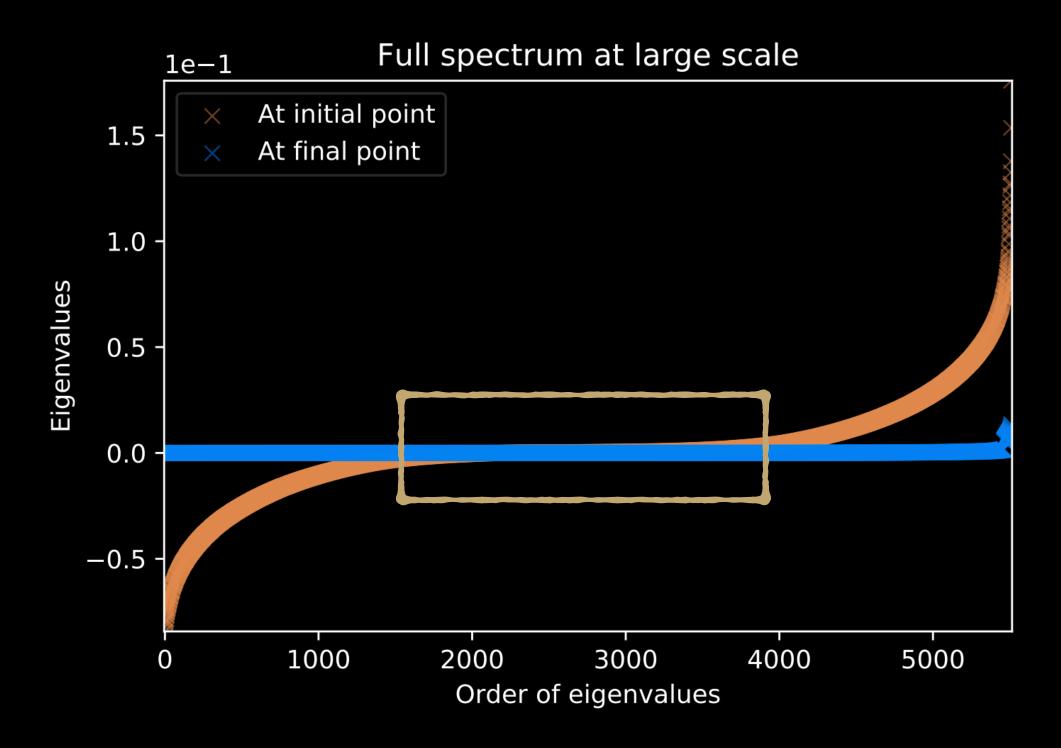
Hessian Range range(H) = { $y = H\theta$: $\theta \in \mathbb{R}^p$ } Hessian Rank

 $rank(\mathbf{H}) = dim(range(\mathbf{H}))$



Related Work

Sagun et. al., 2017



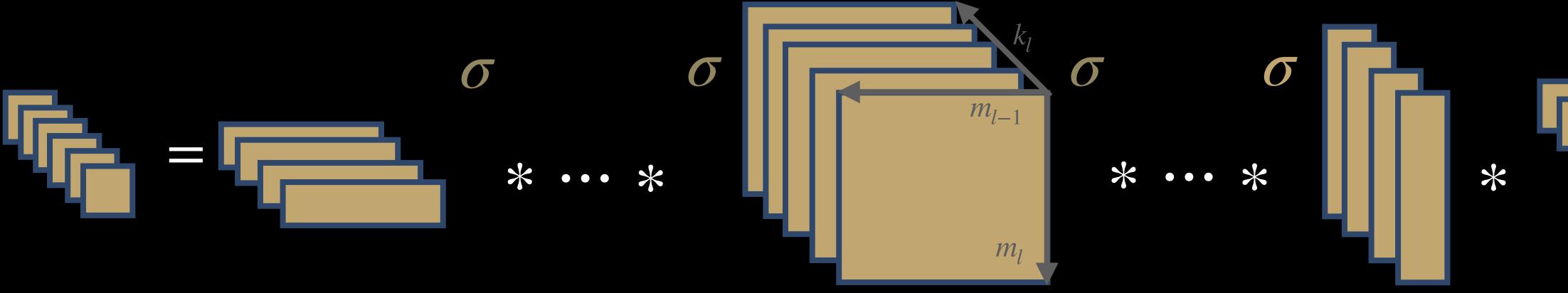
Significant extent of degeneracy in the Hessian

Singh et. al., 2021 $\operatorname{rank}\left(\mathbf{H}_{o}\right) = q(d + K - q)$ $\operatorname{rank}\left(\mathbf{H}_{f}\right) \leq 2q \sum_{i=1}^{L} m_{i} + 2qs - (L+1)q^{2}$ $\operatorname{rank}\left(\mathbf{H}_{\mathscr{L}}\right) = 2q\sum_{i} m_{i} - (L+1)q^{2} + q(r+K)$

Theoretical characterisation for Linear Fully-Connected networks (FCNs)

Setup and Formalism

nonlinearity $\sigma(\cdot)$, stride 1, zero padding, with input channels $m_0 = 1$, output channels = K $\mathcal{M}^{(L+1)}$ $F(\mathbf{x})$



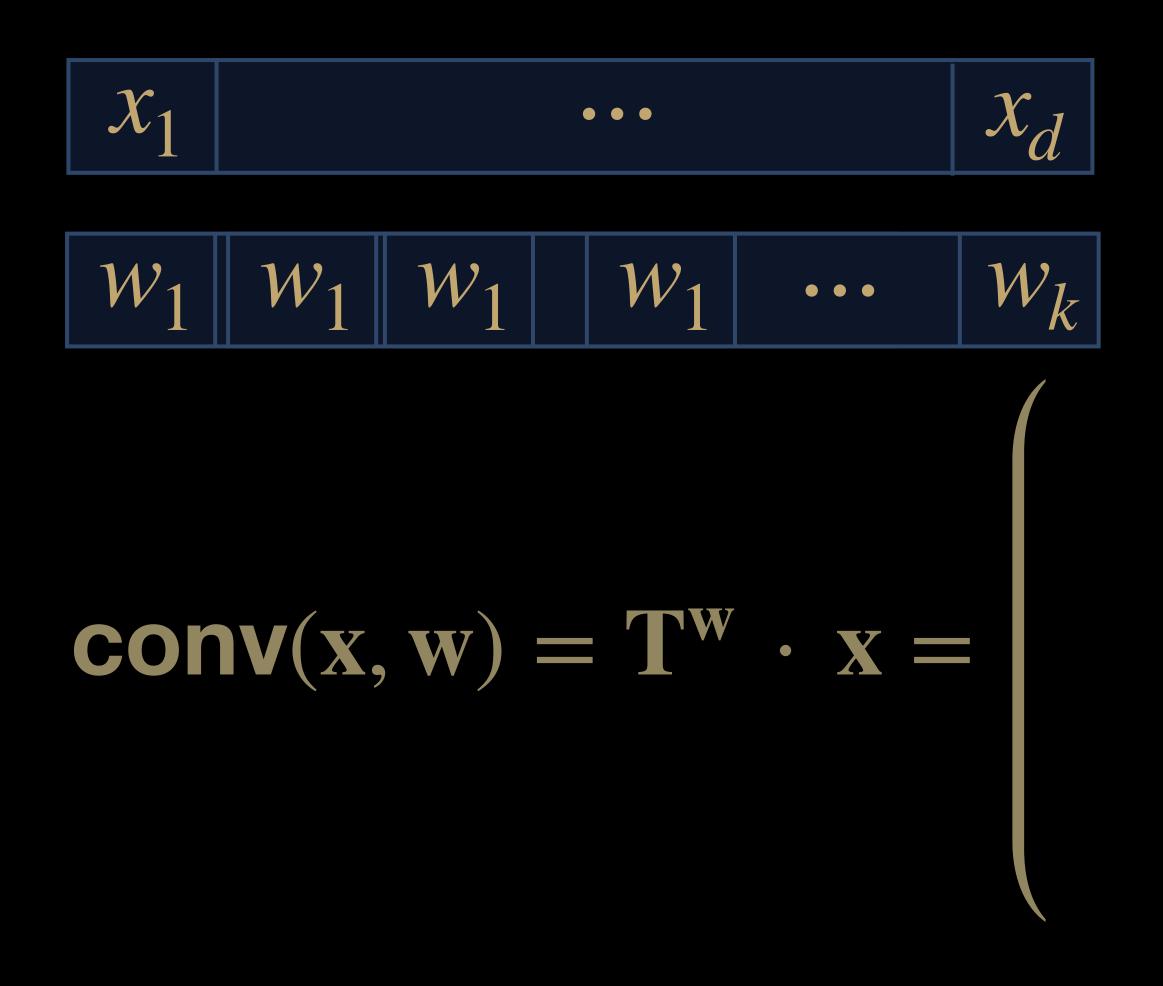
Also, denote the set of all parameters by $\theta := \{ \mathcal{M}^1, \cdots, \mathcal{M}^{L+1} \}$

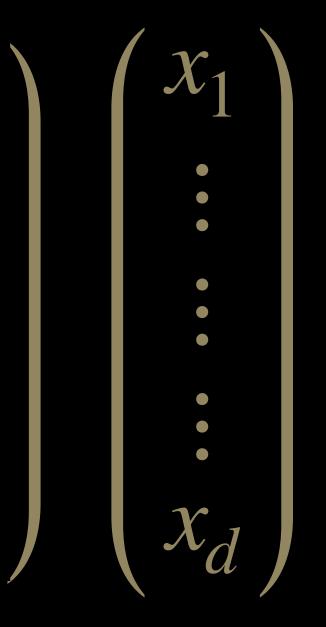
Given input $\mathbf{x} \in \mathbb{R}^{d_0}$, a deep CNN F with L hidden layers of weight tensors $\mathcal{W}^l \in \mathbb{R}^{m_l \times m_{l-1} \times k_l}$, $\gamma (1)$ $\gamma (l)$

Shorthands: $\mathbf{T}^{(k:l)} := \mathbf{T}^{(k)} \cdots \mathbf{T}^{(l)}$ $\forall k > l$ and $\mathbf{T}^{(k:l)} := \mathbf{T}^{(k)} \cdots \mathbf{T}^{(l)}$ $\forall k < l$

Toeplitz framework: A gentle start

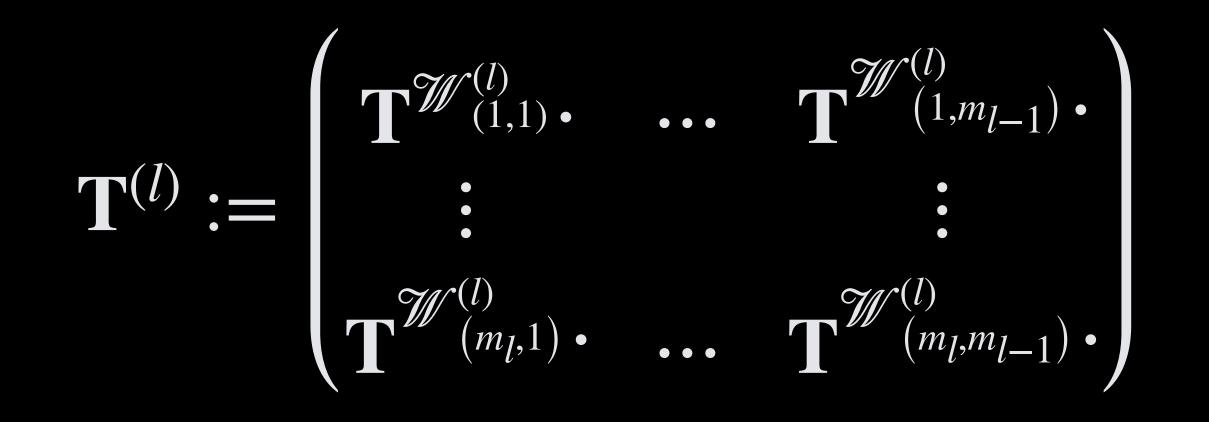
Represent convolution as matrix product with a Toeplitz matrix





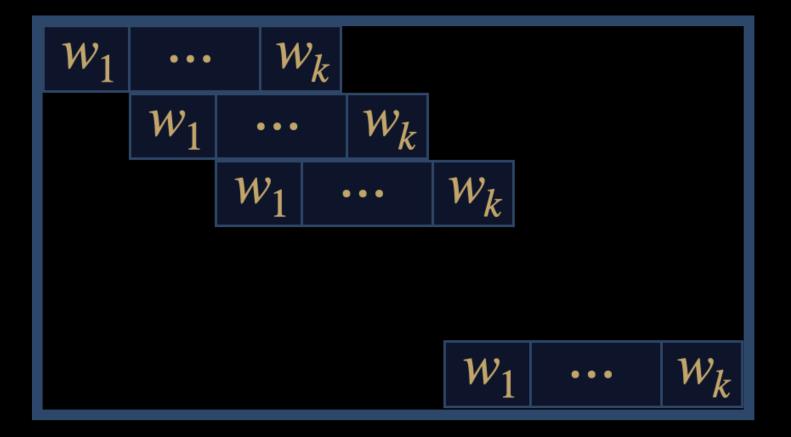
Toeplitz Framework: full-fledged CNNs

 $\mathbf{F}_{\boldsymbol{\theta}}(\mathbf{X}) = \mathcal{W}^{(L+1)} * \sigma \left(\mathcal{W}^{(L)} * \sigma \left(\cdots * \sigma \left(\mathcal{W}^{(1)} * \mathbf{X} \right) \right) \right)$



 $\mathbf{F}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{T}^{(L+1)} \Lambda_{\mathbf{x}}^{(L)} \mathbf{T}^{(L)} \cdots \Lambda_{\mathbf{x}}^{(1)} \mathbf{T}^{(1)} \mathbf{x}$

 $\Lambda^{(l)}_{\mathbf{v}}$ contains the activations at layer l



Each of the $\mathbf{T}^{\mathcal{W}^{l}(i,j)}$ is a Toeplitz matrix as discussed before

Key theoretical results

 $\operatorname{rank}(\mathbf{H}_{o}) \leq \min\left(p, d_{0} \operatorname{rank}\left(\mathbf{T}^{(2:L+1)}\right) + K \operatorname{rank}\left(\mathbf{T}^{(L:1)}\right) - \operatorname{rank}\left(\mathbf{T}^{(2:L+1)}\right) \operatorname{rank}\left(\mathbf{T}^{(L:1)}\right)\right)$ $= \min(p, q_o(d_0 + K - q_o)).$

If there is no bottleneck within, rank

Theorem I: Rank of outer-product Hessian $\mathbf{H}_o = \mathbf{E}_p \left[\nabla_{\boldsymbol{\theta}} F(\mathbf{x}) \nabla_{\boldsymbol{\theta}} F(\mathbf{x})^{\mathsf{T}} \right]$ The rank of \mathbf{H}_o for a deep linear CNN, with kernel sizes k_l and number of filters m_l is:

where $q_o := \min(d_0, m_1 d_1, \dots, m_L d_L, K)$ denotes the flattened bottleneck dimension.

$$\mathsf{L}(\mathbf{H}_o) = Kd_0$$

Key theoretical results

Theorem 2: Rank of functional Hessia

The rank of the l-th column block of \mathbf{H}_{f} for deep linear CNN, with kernel sizes k_{l} and number of filters m_l is: $\operatorname{rank}(\mathbf{H}_f^{\bullet l}) \le \min(q_f m_{l-1} d_{l-1} + q_f m_l d_l - q_f^2, m_l m_{l-1} k_l)$, for $l \in [2, \dots, L]$ and where $q_f := \min(q_o, s)$ and $s := \operatorname{rank}(\Omega) = \operatorname{rank}(\mathbf{E}[\delta_{\mathbf{x},\mathbf{v}} | \mathbf{x}^{\top}])$. $\operatorname{rank}(\mathbf{H}_{f}) \leq \sum_{i=1}^{L+1} \operatorname{rank}(\mathbf{H}_{f}^{\bullet l})$ Hence we have that, (eq. 1)

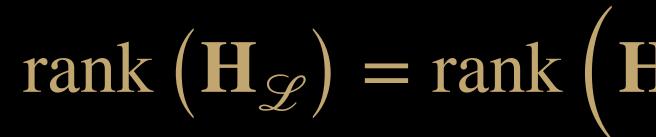
looseness in the bound (so, the inequality in eq. 1 suffices)

an
$$\mathbf{H}_{f} = \mathbf{E}_{p} \Big[\sum_{c=1}^{\infty} \left[\partial \ell_{\mathbf{x},\mathbf{y}} \right]_{c} \nabla_{\theta}^{2} F_{c}(\mathbf{x}) \Big]$$

Block-column independence: Like in the case of FCNs, simply adding the ranks of the blockcolumns of the respective layers, gives the rank of the entire $\mathbf{H}_{\!f}$ without introducing any

Key theoretical results

Rank of the loss Hessian can be bounded as



Rank of the loss Hessian grows as

 $\mathcal{O}(m \cdot L \cdot d_0)$

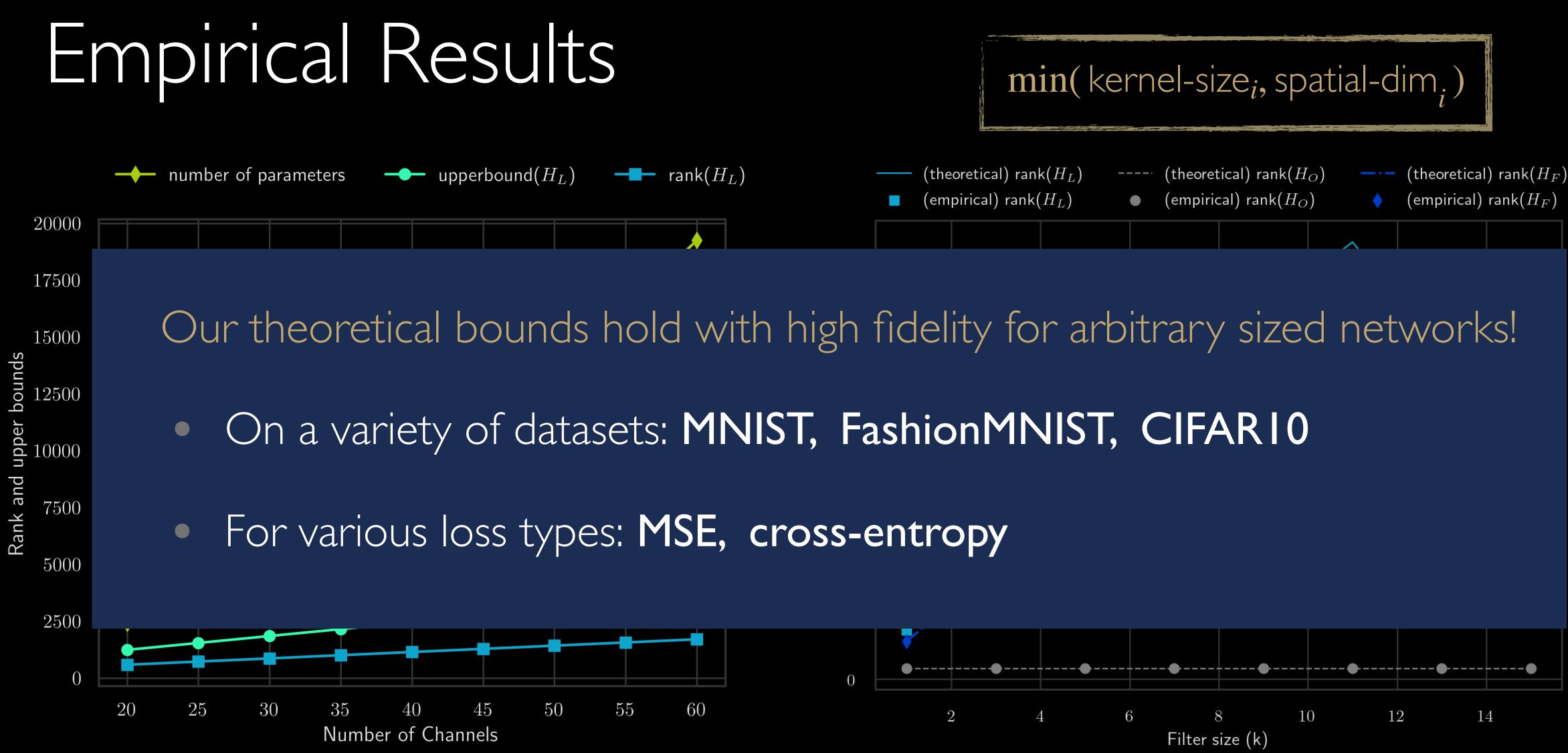
Hence, rank will show a square root behaviour relative to the number of parameters

Thus generalizing the finding of Singh et. al. (2021) to the case of CNNs

$\operatorname{rank}(\mathbf{H}_{\mathscr{L}}) = \operatorname{rank}(\mathbf{H}_{o} + \mathbf{H}_{f}) \leq \operatorname{rank}(\mathbf{H}_{o}) + \operatorname{rank}(\mathbf{H}_{f})$

Number of parameters grow as $\mathcal{O}(m^2 \cdot L \cdot d_0)$

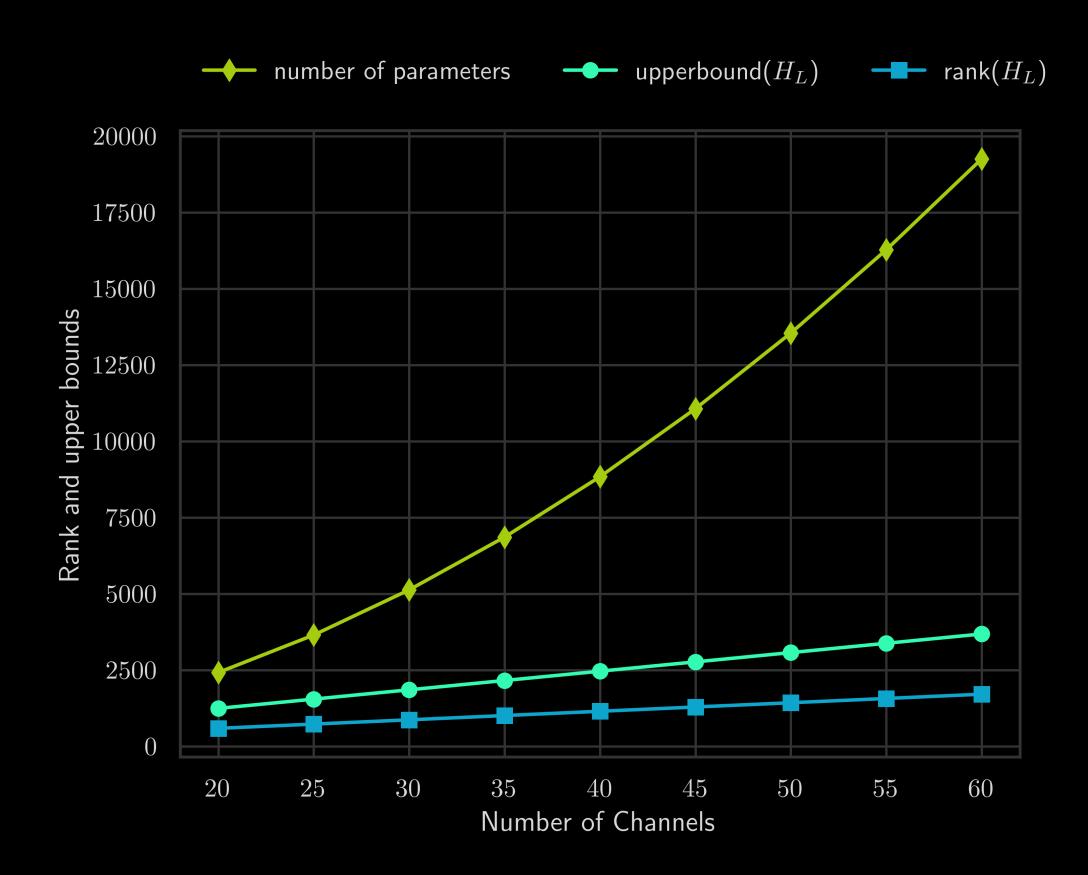
For typical networks, m > L and $m > d_0$



Rank bounds for increasing # of filters m

Rank bounds for increasing filter size k

Summary



This sheds a novel perspective on the nature of CNNs and highlights the degree of redundancy inherent in over-parameterized networks.

- Employ an equivalent representation of CNNs as composition of Toeplitz maps
- Natural change: $m_i \rightarrow m_i d_i$ where $d_i = \frac{d_{i-1} - \text{kernel-size}_i + 2 \text{ padding}_i}{\text{stride}_i} + 1$
- The square-root trend of rank persists