On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLU Network

Shijun Zhang
Duke University

(Joint work with Jianfeng Lu and Hongkai Zhao)

Motivation

- Deep neural networks have achieved great success in real-world applications.

Motivation

- Deep neural networks have achieved great success in real-world applications.
- Explosive growth of parameters and computation.

Motivation

- Deep neural networks have achieved great success in real-world applications.
- Explosive growth of parameters and computation.
- New network architecture via the idea of parameter sharing and function compositions.

Notation

- ReLU networks: fully connected feed-forward neural networks activated by ReLU.

Notation

- ReLU networks: fully connected feed-forward neural networks activated by ReLU.

- $\mathcal{N N}\left\{N, L ; \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}\right\}$: the set of all $\boldsymbol{h}: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ realized by ReLU networks of width N and depth L.

Notation

- ReLU networks: fully connected feed-forward neural networks activated by ReLU.

- $\mathcal{N N}\left\{N, L ; \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}\right\}$: the set of all $\boldsymbol{h}: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ realized by ReLU networks of width N and depth L.
- Let $\boldsymbol{g}^{\circ r}$ denote the r-times composition of \boldsymbol{g}, e.g.,

$$
\boldsymbol{g}^{\circ 3}=\boldsymbol{g} \circ \boldsymbol{g} \circ \boldsymbol{g}
$$

Compositions of single network

Design a new network $\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}$ via repeated compositions:

- $\boldsymbol{g} \in \mathcal{N N}\left\{N, L ; \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{2}}\right\}$.
- $\mathcal{L}_{1}: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ and $\mathcal{L}_{2}: \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{3}}$ are affine.

Compositions of single network

Design a new network $\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}$ via repeated compositions:

- $\boldsymbol{g} \in \mathcal{N N}\left\{N, L ; \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{2}}\right\}$.
- $\mathcal{L}_{1}: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ and $\mathcal{L}_{2}: \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{3}}$ are affine.

Call this type of networks repeated-composition networks (RCNets).

Approximation of RCNets

Theorem
Given a 1-Lipschitz f, for any $r \in \mathbb{N}^{+}$and $p \in[1, \infty)$, there exist

$$
\boldsymbol{g} \in \mathcal{N N}\left\{69 d+48,5 ; \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}^{5 d+5}\right\}
$$

and two affine maps $\mathcal{L}_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{5 d+5}$ and $\mathcal{L}_{2}: \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}$ s.t.

$$
\left\|\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}-f\right\|_{L^{p}\left([0,1]^{d}\right)} \leq 6 \sqrt{d} r^{-1 / d}
$$

Approximation of RCNets

Theorem

Given a 1 -Lipschitz f, for any $r \in \mathbb{N}^{+}$and $p \in[1, \infty)$, there exist

$$
\boldsymbol{g} \in \mathcal{N N}\left\{69 d+48,5 ; \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}^{5 d+5}\right\}
$$

and two affine maps $\mathcal{L}_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{5 d+5}$ and $\mathcal{L}_{2}: \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}$ s.t.

$$
\left\|\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}-f\right\|_{L^{p}\left([0,1]^{d}\right)} \leq 6 \sqrt{d} r^{-1 / d}
$$

- Arbitrarily small error with $O\left(d^{2}\right)$ parameters.
- L^{p}-norm $\rightarrow L^{\infty}$-norm, larger constants.
- 1-Lipschitz $\rightarrow C\left([0,1]^{d}\right)$, modulus of continuity.

Approximation of RCNets

$$
\mathcal{H}(r):=\left\{\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}: \boldsymbol{g} \in \mathcal{N N}\left\{69 d+48,5 ; \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}^{5 d+5}\right\},\right.
$$

$$
\left.\mathcal{L}_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{5 d+5} \text { and } \mathcal{L}_{2}: \mathbb{R}^{5 d+5} \rightarrow \mathbb{R} \text { are affine }\right\}
$$

Approximation of RCNets

$$
\mathcal{H}(r):=\left\{\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}: \boldsymbol{g} \in \mathcal{N N}\left\{69 d+48,5 ; \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}^{5 d+5}\right\}\right.
$$

$$
\left.\mathcal{L}_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{5 d+5} \text { and } \mathcal{L}_{2}: \mathbb{R}^{5 d+5} \rightarrow \mathbb{R} \text { are affine }\right\}
$$

- $\mathcal{H}=\cup_{r=1}^{\infty} \mathcal{H}(r)$ is dense in $C\left([0,1]^{d}\right)$ in terms of the L^{p}-norm for any $p \in[1, \infty)$.

Approximation of RCNets

$$
\mathcal{H}(r):=\left\{\mathcal{L}_{2} \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_{1}: \boldsymbol{g} \in \mathcal{N N}\left\{69 d+48,5 ; \mathbb{R}^{5 d+5} \rightarrow \mathbb{R}^{5 d+5}\right\}\right.
$$

$$
\left.\mathcal{L}_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{5 d+5} \text { and } \mathcal{L}_{2}: \mathbb{R}^{5 d+5} \rightarrow \mathbb{R} \text { are affine }\right\}
$$

- $\mathcal{H}=\cup_{r=1}^{\infty} \mathcal{H}(r)$ is dense in $C\left([0,1]^{d}\right)$ in terms of the L^{p}-norm for any $p \in[1, \infty)$.
- $\mathcal{H}=\cup_{r=1}^{\infty} \mathcal{H}(r)$ is parameterized with only $O\left(d^{2}\right)$ parameters:

$$
\boldsymbol{g}=\boldsymbol{g}_{\boldsymbol{\theta}_{0}}, \mathcal{L}_{1}=\mathcal{L}_{\boldsymbol{\theta}_{1}}, \mathcal{L}_{2}=\mathcal{L}_{\boldsymbol{\theta}_{2}} \quad \Longrightarrow \quad h_{\boldsymbol{\theta}}=\mathcal{L}_{\boldsymbol{\theta}_{2}} \circ \boldsymbol{g}_{\boldsymbol{\theta}_{0}}^{\circ r} \circ \mathcal{L}_{\boldsymbol{\theta}_{1}}
$$

where $\boldsymbol{\theta}=(\underbrace{\boldsymbol{\theta}_{0}}_{O\left(d^{2}\right)}, \underbrace{\boldsymbol{\theta}_{1}}_{O\left(d^{2}\right)}, \underbrace{\boldsymbol{\theta}_{2}}_{O(d)}, r) \in \mathbb{R}^{O\left(d^{2}\right)}$.

Thank you!

https://shijunzhang.top

