On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLU Network

Shijun Zhang

Duke University

(Joint work with Jianfeng Lu and Hongkai Zhao)

Motivation

• Deep neural networks have achieved great success in real-world applications.

Motivation

• Deep neural networks have achieved great success in real-world applications.

• Explosive growth of parameters and computation.

Motivation

• Deep neural networks have achieved great success in real-world applications.

• Explosive growth of parameters and computation.

• New network architecture via the idea of parameter sharing and function compositions.

Notation

 ReLU networks: fully connected feed-forward neural networks activated by ReLU.

Notation

 ReLU networks: fully connected feed-forward neural networks activated by ReLU.

• $\mathcal{NN}\{N, L; \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}\}$: the set of all $h : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ realized by ReLU networks of width N and depth L.

Notation

 ReLU networks: fully connected feed-forward neural networks activated by ReLU.

- $\mathcal{NN}\{N, L; \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}\}$: the set of all $h : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ realized by ReLU networks of width N and depth L.
- Let $g^{\circ r}$ denote the *r*-times composition of g, e.g.,

$$\boldsymbol{g}^{\circ 3} = \boldsymbol{g} \circ \boldsymbol{g} \circ \boldsymbol{g}$$

Compositions of single network

Design a new network $\mathcal{L}_2 \circ g^{\circ r} \circ \mathcal{L}_1$ via repeated compositions:

- $\boldsymbol{g} \in \mathcal{NN}\{N, L; \mathbb{R}^{d_2} \to \mathbb{R}^{d_2}\}.$
- $\mathcal{L}_1 : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ and $\mathcal{L}_2 : \mathbb{R}^{d_2} \to \mathbb{R}^{d_3}$ are affine.

Compositions of single network

Design a new network $\mathcal{L}_2 \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_1$ via repeated compositions:

- $\boldsymbol{g} \in \mathcal{NN}\{N, L; \mathbb{R}^{d_2} \to \mathbb{R}^{d_2}\}.$
- $\mathcal{L}_1 : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$ and $\mathcal{L}_2 : \mathbb{R}^{d_2} \to \mathbb{R}^{d_3}$ are affine.

Call this type of networks repeated-composition networks (RCNets).

Theorem

Given a 1-Lipschitz f, for any $r \in \mathbb{N}^+$ and $p \in [1, \infty)$, there exist $g \in \mathcal{N}\mathcal{N}\{69d + 48, 5; \mathbb{R}^{5d+5} \to \mathbb{R}^{5d+5}\}$ and two affine maps $\mathcal{L}_1 : \mathbb{R}^d \to \mathbb{R}^{5d+5}$ and $\mathcal{L}_2 : \mathbb{R}^{5d+5} \to \mathbb{R}$ s.t. $\|\mathcal{L}_2 \circ g^{\circ r} \circ \mathcal{L}_1 - f\|_{L^p([0,1]^d)} \leq 6\sqrt{d} r^{-1/d}.$

Theorem

Given a 1-Lipschitz f, for any $r\in \mathbb{N}^+$ and $p\in [1,\infty),$ there exist

 $\boldsymbol{g} \in \mathcal{NN}\{69d+48, 5; \mathbb{R}^{5d+5} \to \mathbb{R}^{5d+5}\}$

and two affine maps $\mathcal{L}_1 : \mathbb{R}^d \to \mathbb{R}^{5d+5}$ and $\mathcal{L}_2 : \mathbb{R}^{5d+5} \to \mathbb{R}$ s.t.

$$\left\|\mathcal{L}_2 \circ \boldsymbol{g}^{\circ r} \circ \mathcal{L}_1 - f\right\|_{L^p([0,1]^d)} \le 6\sqrt{d} r^{-1/d}$$

- Arbitrarily small error with $O(d^2)$ parameters.
- L^p -norm $\rightarrow L^{\infty}$ -norm, larger constants.
- 1-Lipschitz $\rightarrow C([0,1]^d)$, modulus of continuity.

$$\mathcal{H}(r) := \left\{ \mathcal{L}_2 \circ \boldsymbol{g}^{\circ r} \circ \boldsymbol{\mathcal{L}}_1 : \boldsymbol{g} \in \mathcal{NN} \left\{ 69d + 48, 5; \ \mathbb{R}^{5d+5} \to \mathbb{R}^{5d+5} \right\}, \\ \boldsymbol{\mathcal{L}}_1 : \mathbb{R}^d \to \mathbb{R}^{5d+5} \text{ and } \boldsymbol{\mathcal{L}}_2 : \mathbb{R}^{5d+5} \to \mathbb{R} \text{ are affine} \right\}$$

$$\mathcal{H}(r) := \left\{ \mathcal{L}_2 \circ \boldsymbol{g}^{\circ r} \circ \boldsymbol{\mathcal{L}}_1 : \boldsymbol{g} \in \mathcal{NN} \{ 69d + 48, 5; \ \mathbb{R}^{5d+5} \to \mathbb{R}^{5d+5} \}, \\ \boldsymbol{\mathcal{L}}_1 : \mathbb{R}^d \to \mathbb{R}^{5d+5} \text{ and } \boldsymbol{\mathcal{L}}_2 : \mathbb{R}^{5d+5} \to \mathbb{R} \text{ are affine} \right\}$$

• $\mathcal{H} = \bigcup_{r=1}^{\infty} \mathcal{H}(r)$ is dense in $C([0,1]^d)$ in terms of the L^p -norm for any $p \in [1,\infty)$.

$$\mathcal{H}(r) := \left\{ \mathcal{L}_2 \circ \boldsymbol{g}^{\circ r} \circ \boldsymbol{\mathcal{L}}_1 : \boldsymbol{g} \in \mathcal{NN} \left\{ 69d + 48, \ 5; \ \mathbb{R}^{5d+5} \to \mathbb{R}^{5d+5} \right\}, \\ \boldsymbol{\mathcal{L}}_1 : \mathbb{R}^d \to \mathbb{R}^{5d+5} \text{ and } \boldsymbol{\mathcal{L}}_2 : \mathbb{R}^{5d+5} \to \mathbb{R} \text{ are affine} \right\}$$

- $\mathcal{H} = \bigcup_{r=1}^{\infty} \mathcal{H}(r)$ is dense in $C([0,1]^d)$ in terms of the L^p -norm for any $p \in [1,\infty)$.
- $\mathcal{H} = \bigcup_{r=1}^{\infty} \mathcal{H}(r)$ is parameterized with only $O(d^2)$ parameters:

$$\boldsymbol{g} = \boldsymbol{g}_{\boldsymbol{ heta}_0}, \ \boldsymbol{\mathcal{L}}_1 = \boldsymbol{\mathcal{L}}_{\boldsymbol{ heta}_1}, \ \boldsymbol{\mathcal{L}}_2 = \boldsymbol{\mathcal{L}}_{\boldsymbol{ heta}_2} \implies h_{\boldsymbol{ heta}} = \boldsymbol{\mathcal{L}}_{\boldsymbol{ heta}_2} \circ \boldsymbol{g}_{\boldsymbol{ heta}_0}^{\circ r} \circ \boldsymbol{\mathcal{L}}_{\boldsymbol{ heta}_1},$$

where $\boldsymbol{\theta} = (\underbrace{\boldsymbol{\theta}_0}_{O(d^2)}, \underbrace{\boldsymbol{\theta}_1}_{O(d^2)}, \underbrace{\boldsymbol{\theta}_2}_{O(d)}, r) \in \mathbb{R}^{O(d^2)}.$

Thank you!

https://shijunzhang.top