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about overfitting

Self-Supervised Representation Learning



• Scalable: train huge models on unlimited data and not worry 
about overfitting

Self-Supervised Representation Learning
[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]

Language
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about overfitting

Self-Supervised Representation Learning
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Self-Supervised Paradigms in Vision

• Contrastive / Siamese

• Compare data points in the latent representation space

• Computer vision: SimCLR, MoCo, BYOL, DINO, …, with augmentations

• Covered in Part II of this tutorial 

𝑥′

𝑥′′
𝑥

[Chen et al, ICML 2020] [He et al, CVPR 2020] [Grill et al, NeurIPS 2020] [Caron et al, NeurIPS 2020]



Self-Supervised Paradigms in Vision

• Contrastive / Siamese

  à Covered in Part II

• Reconstructive / Auto-Encoding

• Reconstruct corrupted data points

• Grounded in the input space

• Paradigm of BERT & GPT in NLP

• Computer Vision: MAE

𝑥′

𝑥′′
𝑥 #𝑥 𝑥

[He et al, CVPR 2022]



Self-Supervised Paradigms in Vision

• “Contrastive + Reconstructive” is also possible

• Multi-tasking makes representations more versatile: iBOT, MAGE

• But the pipeline is less clean to understand scientifically

[Zhou et al, ICLR 2022] [Li et al, CVPR 2023]

𝑥′
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Self-Supervised Paradigms in Vision

• Contrastive / Siamese

  à Covered in Part II

• Reconstructive / Auto-Encoding

  à Covering now in Part I

• Xinlei: MAE – reconstructive on images 

• Christoph: SSL on Videos 

𝑥′

𝑥′′
𝑥 #𝑥 𝑥

[He et al, CVPR 2022]



What is Masked Auto-Encoding (MAE)?

• Very simple method, but highly effective

[He et al, CVPR 2022]



What is Masked Auto-Encoding (MAE)?

• Very simple method, but highly effective

• BERT-like masked modeling objective, but with crucial design 

changes for computer vision

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]



What is Masked Auto-Encoding (MAE)?

• Very simple method, but highly effective

• BERT-like masked modeling objective, but with crucial design 

changes for computer vision

• Intriguing properties – better scalability and more

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]



How MAE Works?

Random masking



How MAE Works?

Encode visible patches



How MAE Works?

Add mask tokens



How MAE Works?

Reconstruct



MAE Reconstruction Example

Masked input: 80% You guess?

?



MAE Reconstruction Example

Masked input: 80% MAE’s guess



MAE Reconstruction Example

Masked input: 80% MAE’s guess Ground truth
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75% mask

original

MAE Can Generalize
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BERT-like: Transformers

• Vision Transformer (ViT)
• Less inductive bias
• Non-overlapping tokenization

• Easier for masked auto-encoding

[Dosovitskiy et al, ICLR 2021]
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• Vision Transformer (ViT)
• Less inductive bias
• Non-overlapping tokenization

• Easier for masked auto-encoding
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• with larger models
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BERT-unlike: Mask Ratio
• BERT: 15% is enough to create a challenging task
• MAE: a high ratio of 75% - 80% to be meaningful

[Devlin et al, NAACL 2019]



BERT-unlike: Encoder-Decoder

• BERT: encoder-only pre-training

[Devlin et al, NAACL 2019]



BERT-unlike: Encoder-Decoder

• MAE:
• Large encoder on visible tokens
• Small decoder on all tokens
• Projection layer to connect the two

projection layer 

[Devlin et al, NAACL 2019]



BERT-unlike: Encoder-Decoder

• MAE:
• Large encoder on visible tokens
• Small decoder on all tokens
• Projection layer to connect the two

• Very efficient when coupled
with high mask ratio (75%)

projection layer 

[Devlin et al, NAACL 2019]



MAE for Downstream Tasks: Encoder Only
• After MAE pre-training, just throw away the decoder

• Encoder is used for representations with full-sequence input



Experimental Protocols

• Pre-training dataset: ImageNet-1K

• Architecture: ViT-Large encoder, 512-dim decoder

[Deng et al, CVPR 2009]



Experimental Protocols

• Pre-training dataset: ImageNet-1K

• Architecture: ViT-Large encoder, 512-dim decoder

• Transfer task: ImageNet-1K classification 
• “ft”: end-to-end tuning with MAE as an initialization

• “lin”: linear probing, a single classifier on top of frozen encoder features

[Deng et al, CVPR 2009]



Analysis: Mask Ratio



Analysis: Decoder Size
• Encoder has 24-blocks, 1024-dimensional 

Decoder depth Decoder width



Analysis: Mask Token [M] in Encoder

• Encoder w/[M] is default in BERT
• Big domain gap for linear probing
• Pre-train sees 25% of the images only, while evaluation sees 100%



Analysis: Reconstruction Target

• Pixels with normalization: per-patch -- minus mean, divide by std

• PCA: only low-frequency component is retained

• dVAE token: from DALLE, expensive to compute

[Ramesh et al, ICML 2021] [Bao et al, ICLR 2022]



Analysis: Augmentations

• MAE can work with minimal data augmentation



Analysis: Augmentations

• MAE can work with minimal data augmentation
• For Contrastive / Siamese learning, augmentation is crucial
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Analysis: Augmentations

• MAE can work with minimal data augmentation
• For Contrastive / Siamese learning, augmentation is crucial
• Masking as a strong “augmentation”: MSN, I-JEPA

𝑥′

𝑥′′
𝑥

[Assran et al, ECCV 2022] [Assran et al, CVPR 2023]



Scalability: Longer Training



Scalability: Longer Training

Wall-clock speed still efficient thanks to MAE design
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+4%

new SOTA on ImageNet-1K (no extra data): 87.8%



Scalability: Larger Models

new SOTA on 5 large-scale classification datasets

new SOTA on 4 lmageNet robust evaluations



Scalability: Larger Models

COCO detection: +4.0% ADE20K segmentation: +3.7%



Scalability: Sequence Length
• Input: 𝑝×𝑝 patches from 
𝐼×𝐼	images as tokens

• Length of token sequence 
𝐿 = 𝐼/𝑝 !

• Analysis: change 
sequence length for MAE, 
but fix length for 
downstream tasks

[Hu et al, arXiv 2202.04639]

https://arxiv.org/abs/2202.04639


Analysis of 𝐿, 𝐼 and 𝑝, 𝐿 = 𝐼/𝑝 !

sequence length 𝐿 = 784

patch size 𝑝 = 16image size 𝐼 = 448

COCO detection and ADE20K segmentation

[Hu et al, arXiv 2202.04639]

https://arxiv.org/abs/2202.04639


Scalability: Sequence Length
[Hu et al, arXiv 2202.04639]

COCO pre-training ImageNet-1K pre-training

• Sequence length helps more for larger models

https://arxiv.org/abs/2202.04639


Take-aways

• Self-supervised learning allows representation learning at scale

• Masked auto-encoders as a step toward scalable vision learners



Large
Language
Models

Take-aways

• Self-supervised learning allows representation learning at scale

• Masked auto-encoders as a step toward scalable vision learners

• Still need to close the gap with large language models

MAE



Self-supervised learning from masked 
video and audio

Christoph Feichtenhofer
Meta AI, FAIR



• 4 topics on masked self-supervised learning from video (visual) and audio information

Outline: Advances in representation learning from video

1. Video Masked Autoencoders
2. Audio Masked Autoencoders

3. Masked Audio-Video Learners
4. Hiera, a fast hierarchical transformer 

Hiera Encoder Decoder



Masked Autoencoders As Spatiotemporal Learners
Christoph Feichtenhofer*, Haoqi Fan*, Yanghao Li, Kaiming He

Meta AI, FAIR

github.com/facebookresearch/mae_st
github.com/facebookresearch/SlowFast



Masked Language Modeling

“Two men playing a game of basketball on an outside court.”

“Two men playing a game of basketball on an outside 
court.”

Devlin et al., BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding



Masked Autoencoders (MAE) for visual learning

He et al., Masked Autoencoders Are Scalable Vision Learners



Masked Autoencoders as spatiotemporal learners

• Masking of random patches in spacetime 
• Encoder operates on the set of visible patches
• A small decoder on encoded patches and mask tokens reconstruct input 
• Except for patch and positional embeddings, no inductive bias



Masking ratio can be extremely high

• For image classification, 75% is the optimal value, but for video 90% is 
considerably better

• Task:
Kinetics-400 (K400)
video classification

• Metric: accuracy (acc.)

• Model: ViT-L
• Pre-train: 200-1600 epochs
• Fine-tune: 100 epochs
• Training from scratch: 71.4%



Masking can be agnostic in spacetime



MAE is faster than pure supervised training



Influence of data scale and curation



MAE visualizations 
input 98% masked input 95% maskedoutput 98% output 95%original
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MAE visualizations 
input 98% masked input 95% maskedoutput 98% output 95%original



Masked Autoencoders that Listen
Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski

Michael Auli, Wojciech Galuba, Florian Metze, Christoph Feichtenhofer

Meta AI, FAIR

In NeurIPS 2022

github.com/facebookresearch/AudioMAE



Audio-MAE



Experiments

• Pre-training (PT)
• Audioset-2M

• 2 million 10-sec audio recordings in unbalanced 527 classes
• Labels are not used (self-supervised pre-training)

• For each 10-sec audio recording
• 128 Mel-fbanks / 1024 time windows (stride 10 ms)
• Shape: 1024x128x1

• Fine-tuning
• Audioset-20K (balanced)
• Audioset-2M (unbalanced)
• ESC-50
• Speech commands v1
• Speech commands v2
• SID (Voxceleb)



mAP

ratio ratio



Comparison to state-of-the-art



Audio-MAE speech sample

masked 80%

original

reconstruction 
output



Audio-MAE misc sound sample

masked 80%

original

reconstruction 
output



Audio-MAE music sample

masked 80%

original

reconstruction 
output



A unifying trend across Vision and Audio

2022

MAE-ST (Video-MAE)
NeurIPS 22

Audio-MAE
NeurIPS 22

MAViL: Masked Audio-Video Learners
arXiv 2023 

github.com/facebookresearch/MAViL



MAViL: Masked Audio-Video Learners
• Reconstructing aligned & contextualized representations 

• Inter-modal and intra-modal masked contrastive learning for promoting alignment between 
semantically correlated audio and/or video.

• Train a student under masked view to predict contextualized representations in the aligned 
latent space generated by a teacher with full-view.

• Model Architecture



MAViL: Masked Audio-Video Learners
• Two-stage training:
• Stage 1: Contrastive objectives and raw A-V reconstruction
• Stage 2: Contrastive objectives and contextualized reconstruction from a Teacher

• Iteration 1: Use Stage1 MAViL as teacher
• Iteration 2+: Use previous MAViL student as teacher

Stage 1 Stage 2

Iter1

Iter2+



Experiments

• Pre-training (PT)
• Audioset-2M

• 2 million 10-sec videos
• Labels are not used (self-supervised pre-training)

• For each 10-sec audio track
• 128 Mel-fbanks/ 1024 time windows (stride 10 ms)
• Shape: 1x1024x128

• For each 10-sec video track
• Sample 4-sec with 8 frames
• Shape: 8x3x224x224

• MAViL model
• ViT-B backbone for Audio/Video
• 80% Masking Ratio

• Fine-tuning
• A-V Classification

• Audioset-20K (balanced)
• Audioset-2M (unbalanced)
• VGGSound

• Audio-only Classification
• Speech commands v1
• ESC-50

• Audio-Video Retrieval
• YouCook
• MSR-VTT

27



Ablation Studies on Audioset-2M

Observation 1: Fusing multimodal info for 
MAE reconstruction improve 0.3-0.4 mAP
Observation 2: Both Inter-modal and Intra-
modal contrastive learning helps!
Observation 3: Reconstructing aligned and 
contextualized representations provides 
additional 2.6-2.8 mAP gains!



A-V Classification 

MAViL not only learns strong joint audio-video representations (A+V), but can also improve single modality encoders 
without using the other modality during fine-tuning (A, V). 



Qualitative Results:
Original

Masked Input

Reconstruction



Hiera: A Hierarchical Vision Transformer without 
the Bells-and-Whistles

Chaitanya Ryali*, Yuan-Ting Hu*, Daniel Bolya*, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid 
Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao Li*, Christoph Feichtenhofer*

Meta AI, FAIR

In ICML 2023 
Oral A2 Computer Vision and Efficient ML Tue 25 Jul 5:30 p.m. 

Poster: Wed 26 Jul 2 p.m. — 3:30 p.m. 

github.com/facebookresearch/Hiera



Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

● A simple hierarchical vision transformer
● Created by removing the bells-and-whistles from an existing one (MViTv2)
● Works if we supply the model with spatial bias through MAE pre-training
● Decoder can be multi-scale, important for video accuracy

Hiera Encoder ViT
DecoderInput Target



Hiera: Mask Unit Attention

● MAE is incompatible with multi-scale models.
● MAE masks tokens, but tokens in multi-scale 

transformers start very small (e.g., 4 x 4 pixels).
● (a) We mask coarser “mask units” (32x32 pixels) 

instead of tokens directly. 
● (b) MAE deletes what it masks (a problem for 

spatial modules like conv). 
● (c) Keeping masked tokens fixes this but gives 

up 4 − 10x training speed-up.
● (d) We can solve the issue with undesirable 

padding.
● (e) In Hiera, we side-step the problem entirely 

by changing the architecture so the kernels 
can’t overlap between mask units.

One
Token

One
Mask
Unit

(a) Use Mask Units instead of tokens.

(d) Baseline: Separate units & pad.

Sparse, but padding has overhead.

3x3
Conv

✓

Potential Solutions
(c) MaskFeat: Fill with [mask].

[Mask]

Not sparse: VERY slow training.

3x3
Conv

✓

(e) Hiera: Just set kernel size = stride.

Sparse, no overhead, simple.

2x2
Max

✓ 2x2
Max

(c) Problem: This breaks the 2D grid.

[Deleted]

3x3
Conv

3x3
Conv

3x3
Conv[Deleted]

(b) Problem: MAE deletes mask units.

?

This breaks the 2D grid, causing errors 
for hierarchical models (e.g., w/ convs).



Bells-and-whistles are unnecessary when training with 
a strong pretext task (MAE)

Without MAE pre-training:



Significant speedup over concurrent work

81.5

Hiera-B+

Hiera-L
ConvNextV2-L

ConvNextV2-B

Hiera-L

Hiera-B
ViT-B

ViT-L

87.
3

85.2

84.0

80 0 Inference Speed (clip/s)Kinetics-400 Accuracy (%)

Inference Speed (im/s)ImageNet-1K Accuracy (%)

+2.5 acc.

+2.1 acc.

40.8

17.8

47.1

133.6

2.8x faster

2.3x faster

+0.3

646

1247

531

414

+0.3 1.9x faster

1.3x faster

86.1

85.2

85.8

84.9
Images

Video

83 0
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Hiera outperforms
The SotA on Images

Hiera establishes a 
new frontier on Video

1.4x
faster

+1.1
acc.

86.5

86

85.5

85

84.5

84

1.3x faster

Hiera (B/B+/L/H)

ViT (B/L/H)

MCMAE (B/L)
ConvNextV2 (B/L/H)

256 512 1024 2048

87

86

85

84

83

82 Hiera (B/L/H)

ViT (B/L/H)

16 32 64 128

+2.1 acc.
2.3x faster

+2.5 acc.
2.8x faster

Hiera: Simple and fast



• Video offers to learn by space-time prediction of appearance/shape, motion
• Video allows learning from spatiotemporal associations (across modalities)

Summary: Self-supervised learning from video

1. Video MAE 2. Audio MAE

4. Hiera, a fast hierarchical transformer 
3. Masked Audio-Video Learners

Hiera Encoder Decoder



Self-Supervised Learning 
from Research Advances to Best Practices

Ishan Misra, Mathilde Caron, Mark Ibrahim, Randall Balestriero

ICML 2023

Part 2



2



3

One of the most promising 
ways to build background 
knowledge and approximate 
common sense.



4

  

🤔Method? Numerous 
other decisions

&



5

 😃Wisdom of Many 
Self-Supervised Learning 

Chefs

8 institutions

dozen+ researchers



1. Navigating the families of 
self-supervised learning methods 
— Ishan

2. Recipes of best practices for 
training self-supervised learning 
methods 
— Mathilde, Mark, Randall

6



Navigating the families of self-supervised 
learning methods

Ishan Misra

GenAI @ Meta AI



• Obtain "labels" from the data itself by using a "semi-automatic" process
• Predict part of the data from other parts
• Train a network using such a prediction task

What is "self" supervision?

Observed 
data

Hidden data
Hidden property of the data

8



• Training data is “automatically generated”
• Ideally, for a downstream task that we care about, need less human 

supervision

Why is it useful?

9



In the context of 
Computer Vision

10



• Self-supervised task used for learning representations
• Often, not the "real" task (like image classification) we care about

Pretext task

Observed data Hidden data
Hidden property of the data

Pretext task

Unsupervised visual representation learning by context prediction. Doersch et al., 2015 11



• Using images
• Using video
• Using video and sound

Pretext task

Observed data Hidden data
Hidden property of the data

12



• Type of hidden data/property
• Loss function/Training 

mechanism

How to categorize SSL approaches?

Training Performance based
• Ease of use
• Amount of training/supervision 

needed for downstream 
application

Observed data Hidden data
Hidden property of the data

13



Type of hidden data/property

Doersch et al., 2015, Unsupervised visual representation learning by context prediction 14



Gidaris et al., 2018, Predicting Image Rotations

00 900

1800 2700

Input: image rotated by 
[0, 90, 180, 270]

Output: 4-way classification

Type of hidden data/property

15



• Masked Image Modeling (MIM)
• Predict missing pixel values

Image from: BEIT: BERT Pre-Training of Image Transformers  - Bao et al., 2021
MAE - He et al., 2021

Type of hidden data/property

16



• Masked Image Modeling (MIM)
• Be robust to missing pixels in the input

MSN Masked Siamese Networks - Assran et al., 2022

Type of hidden data/property

Similar 
Features

17



• Invariance
• Be robust to a large class of data augmentations

Type of hidden data/property

Similar 
Features

Figure from Dosovitskiy et al., 2014

18



Training/Loss Function
• Can be quite simple if the target is computed algorithmically

Discrete 
classification: 
Cross Entropy

Discrete 
classification: 
Cross Entropy

Reconstruction of 
pixels: MSE

19



Training/Loss Function — Invariance methods
• Can be involved

Similar 
Features

20



• Being invariant to the data augmentation

Invariance based learning

Learn features such that: 

Figure from Dosovitskiy et al., 2014
21



Learned features are invariant to "nuisance factors" 
or data augmentation

Why is it useful?

22

Learn features such that: 



Can it work?

encoder

image

similarity
grad

23

grad

encoder



Trivial Solutions

Satisfies the invariance property, but not useful 24

encoder

image

similarity
gradgrad

encoder



Invariant feature learning - Training/Loss categorization

Based on ways that they avoid trivial solutions

25



Invariant feature learning: ways to avoid trivial solutions

Similarity Maximization Objective
• Contrastive learning

• MoCo, PIRL, SimCLR

• Clustering
• DeepCluster, SeLA, SwAV

• Distillation
• BYOL, SimSiam, DINO

Redundancy Reduction Objective
• Redundancy Reduction

• Barlow Twins, VICReg

26



Many ways to avoid trivial solutions
Similarity Maximization Objective
• Contrastive learning

• MoCo, PIRL, SimCLR

• Clustering
• DeepCluster, SeLA, SwAV

• Distillation
• BYOL, SimSiam

Redundancy Reduction Objective
• Redundancy Reduction

• Barlow Twins

27



Contrastive Learning
Groups of 

Related and Unrelated
 Images

28



Contrastive Learning

29



Contrastive Learning
Loss Function

Embeddings from related images should be 
closer than embeddings from unrelated images

Hadsell et al., 2005, DrLim 30



Contrastive Learning in PIRL

Self-Supervised Learning of Pretext-Invariant Representations. Misra et al. 2019



van der Oord et al., 2018, 
Henaff et al., 2019

Contrastive Predictive 
Coding

Nearby patches vs. distant patches of an Image

32



Hadsell et al., 2005, DrLim
van der Oord et al., 2018, CPC

AVID+CMA - Morgado et al., 2020
GDT - Patrick et al., 2020 33

Frames of a video Video & Audio



Tracking Objects

Unsupervised Learning of Visual Representations using Videos. Wang & Gupta, 2015.

34



3D Point Clouds

Augmentations

DepthContrast - Zhang et al., ICCV 2021
PointContrast Xie et al., CVPR 2020

35



Good negatives are necessary

Hadsell et al., 2005, DrLim

Good negatives are very important in contrastive 
learning

36

Loss Function
Embeddings from related images should be 

closer than embeddings from unrelated images



SimCLR

• Large batch size - e.g. in SimCLR
• Pros - Simple to implement
• Cons - Large batch size

GPU 1 GPU 2 GPU 3

A simple framework for contrastive learning - Chen et al., 2020
37



Memory Bank
• Maintain a "memory bank" -- momentum of 

activations
• Pros - compute efficient
• Cons - Needs large memory, not "online"

Non parametric Instance Discrimination - Wu et al., 2018
38



MoCo
• Maintain "momentum" network - MoCo
• Pros - online, improved performance
• Cons - extra memory for parameters/stored features, extra fwd pass 

compared to memory bank

Momentum Contrast - He et al., 2019
39



Many ways to avoid trivial solutions
Similarity Maximization Objective
• Contrastive learning

• MoCo, PIRL, SimCLR

• Clustering
• DeepCluster, SeLA, SwAV

• Distillation
• BYOL, SimSiam

Redundancy Reduction Objective
• Redundancy Reduction

• Barlow Twins
40



Contrastive learning -- what does it do?

41



Contrastive learning -- what does it do?

42



Contrastive Learning => Groups in feature space

43



Clustering creates groups too

Creates groups
 in the feature space

So does clustering?!

44



Many ways to avoid trivial solutions
Similarity Maximization Objective
• Contrastive learning

• MoCo, PIRL, SimCLR

• Clustering
• DeepCluster, SeLA, SwAV

• Distillation
• BYOL, SimSiam, DINO

Redundancy Reduction Objective
• Redundancy Reduction

• Barlow Twins
45



“Self” Distillation

• What we want

• How we do it

• Prevent trivial solutions by asymmetry
• Asymmetric learning rule between student teacher
• Asymmetric architecture between student teacher

46



BYOL
• What we want

• How we do it

BYOL - Grill et al., 2020 47



SimSiam
• What we want

SimSiam - Chen & He 2020 48



DINO - Main idea

DINO - Caron et al., 2022 49



I-JEPA - Main idea

I-JEPA - Assran et al., 2023
50



Many ways to avoid trivial solutions
Similarity Maximization Objective
• Contrastive learning

• MoCo, PIRL, SimCLR

• Clustering
• DeepCluster, SeLA, SwAV

• Distillation
• BYOL, SimSiam

Redundancy Reduction Objective
• Redundancy Reduction

• Barlow Twins, VICReg

51



Barlow Twins - Loss

Barlow Twins - Zbontar et al., 2020 52



Barlow Twins - Loss

53Barlow Twins - Zbontar et al., 2020



How to evaluate?
Most standard way
Use the pretrained network from self-supervised learning
Use some amount of labeled data for the downstream task
Measure performance

54



Fine-tune all layers Linear classifier kNN

How to use the labeled data?

55



How much labeled data to use?
Most important factor
Typically not measured in academic papers
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Label-efficient learning

MSN Masked Siamese Networks - Assran et al., 2022
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Pretraining time vs. Performance

Label efficient and compute efficient

I-JEPA - Assran et al., 2023
58



Are the models useful without any labeled data?

DINO - Caron et al., 2022
59



60

https://docs.google.com/file/d/1BspCTzaWg1KfNZtS57a8shEGhm1m07NO/preview


How to train your self-supervised feature 
extractor ?

Mathilde Caron 

@Google Research

dragon



Practical use case

You have access to unlabeled data and you want to leverage 
these to learn a good feature space.

unlabeled 
data

deep neural 
network

features useful for 
downstream tasks
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Option 1: Re-use opensourced models
github.com/facebookresearch/dino

63

You can directly download 
SSL models and use them 
to extract features on 
your data.



However, there might be a domain gap…

• For example, opensourced SSL models is pre-trained on 
natural looking images:

• But, your data looks like this:

 Solution:  SSL training on your data
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Option 2: Train SSL models on your data

• Most SSL algorithms look pretty simple to train :D !
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 2
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1
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The DINO training algorithm
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Code snippet

67



Important components for a successful SSL training

Goal: preventing the model from solving the task in a trivial 
way

How the model finds trivial ways to solve the SSL 
task…

… and how to prevent it.

Collapse all the representations to a constant output.
Centering+sharpening or Sinkhorn-Knopp 
normalizations

68



Collapse to constant output
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Centering

70



Centering

71



Centering alone -> it still collapses
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Centering + sharpening
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Important components for a successful SSL 
training
Goal: preventing the model from solving the task in a trivial 
way

How the model finds trivial ways to solve the SSL 
task…

… and how to prevent it.

Collapse all the representations to a constant output.
Centering+sharpening or Sinkhorn-Knopp 
normalizations

Find similar images based on color statistics Data augmentation

74



Data augmentation to prevent solving the task with 
low-level cues

Two crops from the same image: The model just need to encode color information to predict 
one from the other.
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Data augmentation to prevent solving the task with 
low-level cues

 ssl_data_augmentation = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomApply(
            [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            utils.GaussianBlur(0.1),
            utils.Solarization(0.2),
            normalize,
        ])

https://github.com/facebookresearch/dino/blob/main/main_dino.py 76



Important components for a successful SSL 
training

Goal: preventing the model from solving the task in a trivial 
way

How the model finds trivial ways to solve the SSL 
task…

… and how to prevent it.

Collapse all the representations to a constant output.
Centering+sharpening or Sinkhorn-Knopp 
normalizations

Find similar images based on color statistics Data augmentation

Find similar images based on who is located on which 
hosts/machines

Batch synchronisation

77



Importance of batch normalization

Images located on the same device 
are closer together because they 
share the same batch statistics.
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A few more recipes of best practices

Mark & Randall



A Cookbook of Self-Supervised Learning 
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+ Special thanks to Ishan* and Mathilde***

***Google Research

https://arxiv.org/abs/2304.12210

To contribute
send us email

marksibrahim@meta.com
randallbalestriero@gmail.com 

mailto:marksibrahim@meta.com
mailto:randallbalesetriro@gmail.com


Speeding up your training

81

MASKING



Speeding up your training

82

# Enables autocasting for the forward 
 with autocast():
     output = model(input)
     loss = loss_fn(output, target)



Distributed Training Gotchas

83

model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

#1 Sync your batchnorm
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# Forward
torch.distributed.all_gather(output, x)

# Backward
torch.distributed.all_reduce(all_gradients)

Distributed Training Gotchas

#2 Gather & Reduce



Other considerations

85

CNNs or ViTs?
Project size?
SSL for unbalanced data
Standard hyperparameters
Extending SSL to other modalities
…



Evaluation without labels

86RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank. Garrido et al. 2022
High Fidelity Visualization of What Your Self-Supervised Representation Knows About. Bordes et al. 2022

RankMe

} embeddings’ rank

RCDM

untrained SSLground truth



Evaluation without labels

87RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank. Garrido et al. 2022
High Fidelity Visualization of What Your Self-Supervised Representation Knows About. Bordes et al. 2022

RCDM

https://www.linkedin.com/in/florianbordes/
florian.bordes@umontreal.ca

Florian Bordes



Evaluation without labels

88RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank. Garrido et al. 2022
High Fidelity Visualization of What Your Self-Supervised Representation Knows About. Bordes et al. 2022

RankMe

} embeddings’ rank

Quentin Garrido



A Cookbook of Self-Supervised Learning 
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@ICML in person

Yuandong Vlad Quentin

Ishan Ari Mark Randall

Andrew

https://arxiv.org/abs/2304.12210
Tom


