Self-Supervised Learning in Vision From Research Advances to Best Practices

ICML 2023 Tutorial Part 1-A

Xinlei Chen

facebook Artificial Intelligence Research

Self-Supervised Learning

Self-Supervised Learning

Self-Supervised Learning

Self-Supervised Representation Learning

Self-Supervised Representation Learning

• Scalable: train huge models on unlimited data and not worry about overfitting

[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]

Self-Supervised Representation Learning

• Scalable: train huge models on unlimited data and not worry about overfitting

[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]

Self-Supervised Representation Learning

• Scalable: train huge models on unlimited data and not worry about overfitting

[Chen et al, ICML 2020] [He et al, CVPR 2020] [Grill et al, NeurIPS 2020] [Caron et al, NeurIPS 2020]

Self-Supervised Paradigms in Vision

• Contrastive / Siamese

- Compare data points in the latent *representation* space
- Computer vision: SimCLR, MoCo, BYOL, DINO, ..., with augmentations
- Covered in Part II of this tutorial

[He et al, CVPR 2022]

Self-Supervised Paradigms in Vision

Contrastive / Siamese

 \rightarrow Covered in <u>Part II</u>

• Reconstructive / Auto-Encoding

- Reconstruct *corrupted* data points
- Grounded in the input space
- Paradigm of BERT & GPT in NLP
- Computer Vision: MAE

[Zhou et al, ICLR 2022] [Li et al, CVPR 2023]

Self-Supervised Paradigms in Vision

• "Contrastive + Reconstructive" is also possible

- Multi-tasking makes representations more versatile: iBOT, MAGE
- But the pipeline is *less clean* to understand scientifically

[He et al, CVPR 2022]

Self-Supervised Paradigms in Vision

Contrastive / Siamese

→ Covered in Part II

• Reconstructive / Auto-Encoding

- → Covering *now* in <u>Part I</u>
 - <u>Xinlei</u>: MAE reconstructive on images
 - Christoph: SSL on Videos

[He et al, CVPR 2022]

What is Masked Auto-Encoding (MAE)?

• Very simple method, but highly effective

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]

What is Masked Auto-Encoding (MAE)?

- Very simple method, but highly effective
- BERT-like masked modeling objective, but with crucial design

changes for computer vision

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]

What is Masked Auto-Encoding (MAE)?

- Very simple method, but highly effective
- BERT-like masked modeling objective, but with crucial design changes for computer vision
- Intriguing properties better scalability and more

How MAE Works?

Random masking

How MAE Works?

Encode visible patches

How MAE Works?

Add mask tokens

Reconstruct

MAE Reconstruction Example

Masked input: 80%

You guess?

MAE Reconstruction Example

Masked input: 80%

MAE's guess

MAE Reconstruction Example

Masked input: 80%

MAE's guess

Ground truth

ImageNet val set (unseen)

ImageNet val set (unseen)

COCO val set (unseen)

75% mask

85% mask

75% mask

85% mask

75% mask

85% mask

[Dosovitskiy et al, ICLR 2021]

BERT-like: Transformers

 Vision Transformer (ViT) Class Bird MLP Less inductive bias Ball Head Car <u>Non-overlapping</u> tokenization ... Easier for masked auto-encoding Transformer Encoder Patch + Position 3 5 7 8 4 6 [2] 9 0* 1 Embedding * Extra learnable Linear Projection of Flattened Patches [class] embedding

[Dosovitskiy et al, ICLR 2021]

BERT-like: Transformers

 Vision Transformer (ViT) Class Bird MLP Less inductive bias Ball Head Car <u>Non-overlapping</u> tokenization ••• Easier for masked auto-encoding Transformer Encoder Scalable Patch + Position 5 6 $\overline{7}$ 8 3 4 [2] [9] 0* 1 Embedding • with larger models * Extra learnable Linear Projection of Flattened Patches [class] embedding on larger datasets

[Dosovitskiy et al, ICLR 2021]

BERT-like: Transformers

BERT-unlike: Mask Ratio

- BERT: 15% is enough to create a challenging task
- MAE: a high ratio of 75% 80% to be meaningful

BERT-unlike: Encoder-Decoder

• BERT: encoder-*only* pre-training

BERT-unlike: Encoder-Decoder

• MAE:

- Large encoder on visible tokens
- Small decoder on all tokens
- Projection layer to connect the two

BERT-unlike: Encoder-Decoder

• MAE:

- Large encoder on visible tokens
- Small decoder on all tokens
- Projection layer to connect the two
- Very efficient when coupled with <u>high</u> mask ratio (75%)

MAE for Downstream Tasks: Encoder Only

- After MAE pre-training, just *throw away* the decoder
- Encoder is used for representations with *full-sequence* input

[Deng et al, CVPR 2009]

Experimental Protocols

- Pre-training dataset: ImageNet-1K
- Architecture: ViT-*Large* encoder, 512-dim decoder

Experimental Protocols

- Pre-training dataset: ImageNet-1K
- Architecture: ViT-*Large* encoder, 512-dim decoder
- Transfer task: ImageNet-1K classification
 - "*ft*": end-to-end tuning with MAE as an initialization
 - "*lin*": linear probing, a single classifier on top of frozen encoder features

Analysis: Mask Ratio

Analysis: Decoder Size

• Encoder has 24-blocks, 1024-dimensional

blocks	ft	lin	dim	ft	lin
1	84.8	65.5	128	84.9	69.1
2	84.9	70.0	256	84.8	71.3
4	84.9	71.9	512	84.9	73.5
8	84.9	73.5	768	84.4	73.1
12	84.4	73.3	1024	84.3	73.1

Decoder depth

Decoder width

Analysis: Mask Token [M] in Encoder

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	1 ×

- Encoder w/[M] is default in BERT
- Big domain gap for linear probing
 - Pre-train sees 25% of the images only, while evaluation sees 100%

[Ramesh et al, ICML 2021] [Bao et al, ICLR 2022]

Analysis: Reconstruction Target

case	ft	lin
pixel (w/o norm)	84.9	73.5
pixel (w/ norm)	85.4	73.9
PCA	84.6	72.3
dVAE token	85.3	71.6

- Pixels with normalization: per-patch -- minus mean, divide by std
- PCA: only low-frequency component is retained
- dVAE token: from DALLE, expensive to compute

Analysis: Augmentations

case	ft	lin
none	84.0	65.7
crop, fixed size	84.7	73.1
crop, rand size	84.9	73.5
crop + color jit	84.3	71.9

• MAE can work with minimal data augmentation

Analysis: Augmentations

- MAE can work with minimal data augmentation
- For Contrastive / Siamese learning, augmentation is crucial

[Assran et al, ECCV 2022] [Assran et al, CVPR 2023]

Analysis: Augmentations

- MAE can work with minimal data augmentation
- For Contrastive / Siamese learning, augmentation is crucial
- Masking as a strong "augmentation": MSN, I-JEPA

Scalability: Longer Training

Scalability: Longer Training

Wall-clock speed still efficient thanks to MAE design

dataset	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈	prev best
iNat 2017	70.5	75.7	79.3	83.4	75.4 [50]
iNat 2018	75.4	80.1	83.0	86.8	81.2 [49]
iNat 2019	80.5	83.4	85.7	88.3	84.1 [49]
Places205	63.9	65.8	65.9	66.8	66.0 [19] [†]
Places365	57.9	59.4	59.8	60.3	58.0 [36] ‡

new SOTA on 5 large-scale classification datasets

dataset	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈	prev best
IN-Corruption \downarrow [27]	51.7	41.8	33.8	36.8	42.5 [32]
IN-Adversarial [28]	35.9	57.1	68.2	76.7	35.8 [41]
IN-Rendition [26]	48.3	59.9	64.4	66.5	48.7 [41]
IN-Sketch [60]	34.5	45.3	49.6	50.9	36.0 [41]

new SOTA on 4 ImageNet robust evaluations

method	pre-train data	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3
MoCo v3	IN1K	47.9	49.3
BEiT	IN1K+DALLE	49.8	53.3
MAE	IN1K	50.3	53.3

COCO detection: +4.0%

method	pre-train data	ViT-B	ViT-L
supervised	IN1K w/ labels	47.4	49.9
MoCo v3	IN1K	47.3	49.1
BEiT	IN1K+DALLE	47.1	53.3
MAE	IN1K	48.1	53.6

ADE20K segmentation: +3.7%

Scalability: Sequence Length

- Input: p×p patches from
 I×I images as tokens
- Length of token sequence $L = (I/p)^2$
- Analysis: change sequence length for MAE, but <u>fix</u> length for downstream tasks

Analysis of L, I and p, $L = (I/p)^2$

p	L	AP^b	AP^m	mIoU	Ι
64	49	44.0	39.8	35.0	112
32	196	49.5	44.2	48.0	224
16	784	51.7	45.9	50.8	448

image size I = 448

Ι	L	AP^b	AP^m	mIoU	
112	49	47.3	42.1	42.2	
224	196	50.4	45.1	49.4	
448	784	51.7	45.9	50.8	
patch size $p = 16$					

Ι	p	AP^b	AP^m	mIoU
224	8	51.7	46.0	50.5
448	16	51.7	45.9	50.8
672	24	51.7	45.8	50.4

sequence length L = 784

COCO detection and ADE20K segmentation

Scalability: Sequence Length

• Sequence length helps more for larger models

Take-aways

• Self-supervised learning allows representation learning at scale

• Masked auto-encoders as a step toward scalable vision learners

Take-aways

Large Language Models

• Self-supervised learning allows representation learning at scale

• Masked auto-encoders as a step toward scalable vision learners

• Still need to close the gap with large language models

Self-supervised learning from masked video and audio

Christoph Feichtenhofer

Meta AI, FAIR

Outline: Advances in representation learning from video

- 4 topics on masked self-supervised learning from video (visual) and audio information
- 1. Video Masked Autoencoders

2. Audio Masked Autoencoders

3. Masked Audio-Video Learners

4. Hiera, a fast hierarchical transformer

Masked Autoencoders As Spatiotemporal Learners

Christoph Feichtenhofer^{*}, Haoqi Fan^{*}, Yanghao Li, Kaiming He

Meta AI, FAIR

github.com/facebookresearch/mae_st
github.com/facebookresearch/SlowFast

Masked Language Modeling

Devlin et al., BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding

Masked Autoencoders (MAE) for visual learning

Masked Autoencoders as spatiotemporal learners

- Masking of random patches in spacetime
- Encoder operates on the set of visible patches
- A small decoder on encoded patches and mask tokens reconstruct input
- Except for patch and positional embeddings, no inductive bias

Masking ratio can be extremely high

- Task: Kinetics-400 (K400) video classification
- Metric: accuracy (acc.)
- Model: ViT-L
- Pre-train: 200-1600 epochs
- Fine-tune: 100 epochs
- Training from scratch: 71.4%

• For image classification, 75% is the optimal value, but for video 90% is considerably better

Masking can be agnostic in spacetime

case	ratio	acc.
agnostic	90	84.4
space-only	90	83.5
time-only	75	79.1
block	75	83.2

MAE is faster than pure supervised training

Figure 5: MAE pre-training plus fine-tuning is *much more accurate* and *faster* than training from scratch. Here the x-axis is the wall-clock training time (128 A100 GPUs), and the y-axis is the 1-view accuracy on Kinetics-400 validation. The table shows the final accuracy. The model is ViT-L.

Influence of data scale and curation

pre-train set	# pre-train data	pre-train method	K400	AVA	SSv2
-	-	none (from scratch)	71.4	-	-
K400	240k	supervised	-	21.6	55.7
K400	240k	MAE	84.8	31.1	72.1
K600	387k	MAE	84.9	32.5	73.0
K700	537k	MAE	n/a [†]	33.1	73.6
IG-uncurated	1M	MAE	84.4	34.2	73.6

Table 3: Influence of pre-training data, evaluated on K400, AVA, and SSv2 as the downstream tasks.

MAE visualizations

MAE visualizations

MAE visualizations

MAE visualizations

MAE visualizations

Masked Autoencoders that Listen

Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski Michael Auli, Wojciech Galuba, Florian Metze, Christoph Feichtenhofer

Meta AI, FAIR

In NeurIPS 2022

github.com/facebookresearch/AudioMAE

Audio-MAE

Experiments

- Pre-training (PT)
 - Audioset-2M
 - 2 million 10-sec audio recordings in unbalanced 527 classes
 - Labels are not used (self-supervised pre-training)
 - For each 10-sec audio recording
 - 128 Mel-fbanks / 1024 time windows (stride 10 ms)
 - Shape: 1024x128x1

• Fine-tuning

- Audioset-20K (balanced)
- Audioset-2M (unbalanced)
- ESC-50
- Speech commands v1
- Speech commands v2
- SID (Voxceleb)

Figure 2: Masking strategies for Audio-MAE.

Comparison to state-of-the-art

Model	Backbone	PT-Data	AS-20K	AS-2M	ESC-50	SPC-2	SPC-1	SID
No pre-training								
ERÁNN [57]	CNN	-	-	45.0	89.2	-	-	-
PANN [58]	CNN	-	27.8	43.1	83.3	61.8	-	-
In-domain self-super	vised pre-trai	ining						
wav2vec 2.0 [33]	Transformer	LS	-	-	-	-	96.2^{*}	75.2^{*}
HuBERT [35]	Transformer	LS	-	-	-	-	96.3 [*]	81.4^{*}
Conformer [37]	Conformer	AS	-	41.1	88.0	-	-	-
SS-AST [18]	ViT-B	AS+LS	31.0	-	88.8	98.0	96.0	64.3
Concurrent MAE-base	ed works							
MaskSpec [43]	ViT-B	AS	32.3	47.1	89.6	97.7	-	-
MAE-AST [38]	ViT-B	AS+LS	30.6	-	90.0	97.9	95.8	63.3
Audio-MAE (global)	ViT-B	AS	$36.6 \pm .11$	$46.8{\scriptstyle \pm .06}$	$93.6 \pm .11$	$98.3{\scriptstyle \pm .06}$	$97.6 {\pm .06}$	$94.1{\scriptstyle \pm .06}$
Audio-MAE (local)	ViT-B	AS	$\textbf{37.1} {\pm .06}$	$47.3 {\pm .06}$	$94.1{\scriptstyle\pm.10}$	$98.3{\scriptstyle \pm .06}$	$96.9 \pm .00$	$94.8{\scriptstyle \pm .11}$
Out-of-domain super	vised pre-tra	ining						
PSLA [30]	EffNet [59]	IN	31.9	44.4	-	96.3	-	-
AST [10]	DeiT-B	IN	34.7	45.9	88.7	98.1	95.5	41.1
MBT [11]	ViT-B	IN-21K	31.3	44.3	-	-	-	-
HTS-AT [29]	Swin-B	IN	-	47.1	97.0^{\dagger}	98.0	-	-
PaSST [28]	DeiT-B	IN	-	47.1	96.8 [†]	-	-	-

Audio-MAE misc sound sample

Audio-MAE music sample

A unifying trend across Vision and Audio

Target

Audio-MAE

Input

MAVIL: Masked Audio-Video Learners

- Reconstructing aligned & contextualized representations
 - Inter-modal and intra-modal masked contrastive learning for promoting alignment between semantically correlated audio and/or video.
 - Train a student under masked view to predict contextualized representations in the aligned latent space generated by a teacher with full-view.
- Model Architecture

MAVIL: Masked Audio-Video Learners

• Two-stage training:

- Stage 1: Contrastive objectives and raw A-V reconstruction
- Stage 2: Contrastive objectives and contextualized reconstruction from a Teacher
 - Iteration 1: Use Stage1 MAViL as teacher
 - Iteration 2+: Use previous MAViL student as teacher

Experiments

- Pre-training (PT)
 - Audioset-2M
 - 2 million 10-sec videos
 - Labels are not used (self-supervised pre-training)
 - For each 10-sec audio track
 - 128 Mel-fbanks/ 1024 time windows (stride 10 ms)
 - Shape: 1x1024x128
 - For each 10-sec video track
 - Sample 4-sec with 8 frames
 - Shape: 8x3x224x224
 - MAViL model
 - ViT-B backbone for Audio/Video
 - 80% Masking Ratio

- Fine-tuning
 - A-V Classification
 - Audioset-20K (balanced)
 - Audioset-2M (unbalanced)
 - VGGSound
 - Audio-only Classification
 - Speech commands v1
 - ESC-50
 - Audio-Video Retrieval
 - YouCook
 - MSR-VTT

Ablation Studies on Audioset-2M

Method	Audio	Video
A-MAE/V-MAE (baseline)	36.4	17.4
MAViL stage-1		
+ Joint AV-MAE	$36.8_{(+0.4)}$	$17.7_{(+0.3)}$
+ Inter contrast	38.4	21.0
+ Intra and Inter contrast	39.0(+2.2)	$22.2_{(+4.5)}$
MAViL stage-2		
+ Student-teacher learning	$41.8_{(+2.8)}$	$24.8_{(+2.6)}$

Observation 1: Fusing multimodal info for MAE reconstruction improve 0.3-0.4 mAP Observation 2: Both Inter-modal and Intramodal contrastive learning helps! Observation 3: Reconstructing aligned and contextualized representations provides additional 2.6-2.8 mAP gains!

A-V Classification

		AS-2	20K (m	AP↑)	AS-	2M (m.	AP↑)	VGG	Sound ((Acc.†)
Method	РТ	A	V	A+V	А	V	A+V	А	V	A+V
Audio-only Models										
Aud-SlowFast [68]	-	-	-	-	-	-	-	50.1	-	-
VGGSound [58]	-	-	-	-	-	-	-	48.8	-	-
PANNs [69]	-	27.8	-	-	43.9	-	-	-	-	-
AST [64]	IN-SL	34.7	-	-	45.9	-	-	-	-	-
HTS-AT [70]	IN-SL	-	-	-	47.1	-	-	-	-	-
PaSST [71]	IN-SL	-	-	-	47.1	-	-	-	-	-
Data2vec [51]	AS-SSL	34.5	-	-	-	-	-	-	-	-
SS-AST [72]	AS-SSL	31.0	-	-	-	-	-	-	-	-
MAE-AST [73]	AS-SSL	30.6	-	-	-	-	-	-	-	-
Aud-MAE [4]	AS-SSL	37.0	-	-	47.3	-	-	-	-	-
Audio-Video Models	5									
G-Blend [74]	-	29.1	22.1	37.8	32.4	18.8	41.8	-	-	-
Perceiver [75]	-	-	-	-	38.4	25.8	44.2	-	-	-
Attn AV [76]	IN-SL	-	-	-	38.4	25.7	44.2	-	-	-
CAV-MAE [41]	IN-SSL, AS-SSL	37.7	19.8	42.0	46.6	26.2	51.2	59.5	47.0	65.5
MBT [*] [27]	IN21K-SL	31.3	27.7	43.9	41.5	31.3	49.6	52.3	51.2	64.1
MAViL	AS-SSL	41.6	23.7	44.6	48.7	28.3	51.9	60.6	50.0	66.5
MAViL	IN-SSL, AS-SSL	41.8	24.8	44.9	48.7	30.3	53.3	60.8	50.9	67.1

MAViL not only learns strong joint audio-video representations (A+V), but can also improve single modality encoders *without* using the other modality during fine-tuning (A, V).

Qualitative Results:

Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

Chaitanya Ryali*, Yuan-Ting Hu*, Daniel Bolya*, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao Li*, Christoph Feichtenhofer*

Meta AI, FAIR

In ICML 2023 Oral A2 Computer Vision and Efficient ML Tue 25 Jul 5:30 p.m. Poster: Wed 26 Jul 2 p.m. — 3:30 p.m.

github.com/facebookresearch/Hiera

Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

- A simple hierarchical vision transformer
- Created by removing the bells-and-whistles from an existing one (MViTv2)
- Works if we supply the model with spatial bias through MAE pre-training
- Decoder can be multi-scale, important for video accuracy

multi-scale	image	video
×	85.0	83.8
✓	85.6	85.5

(a) **Multi-Scale Decoder.** Hiera being *hierarchical*, using multi-scale information for decoding brings significant gains.

Hiera: Mask Unit Attention

- MAE is incompatible with multi-scale models.
- MAE masks tokens, but tokens in multi-scale transformers start very small (e.g., 4 x 4 pixels).
- (a) We mask coarser "mask units" (32x32 pixels) instead of tokens directly.
- (b) MAE deletes what it masks (a problem for spatial modules like conv).
- (c) Keeping masked tokens fixes this but gives up 4 – 10x training speed-up.
- (d) We can solve the issue with undesirable padding.
- (e) In Hiera, we side-step the problem entirely by changing the architecture so the kernels can't overlap between mask units.

(b) Problem: MAE *deletes* mask units.

This **breaks the 2D grid**, causing errors for hierarchical models (e.g., w/ convs).

Potential Solutions

Bells-and-whistles are unnecessary when training with a strong pretext task (MAE)

	Im	age	Video		
Setting	acc.	im/s	acc.	clip/s	
MViTv2-L Supervised	85.3	219.8	80.5	20.5	
Hiera-L MAE					
a. replace rel pos with absolute $*$	<u>85.6</u>	253.3	<u>85.3</u>	20.7	
b. replace convs with maxpools $*$	84.4	99.9 [†]	84.1	10.4^{\dagger}	
c. delete stride=1 maxpools *	85.4	309.2	84.3	26.2	
d. set kernel size equal to stride	85.7	369.8	85.5	29.4	
e. delete q attention residuals	<u>85.6</u>	374.3	85.5	29.8	
f. replace kv pooling with MU attn	<u>85.6</u>	531.4	85.5	40.8	

Without MAE pre-training:

Figure 8. **Training on classification** *from scratch.* Here we repeat the experiment in Tab. 1 but without MAE pretraining, using MViTv2's supervised recipe instead. As expected, the bells-and-whistles that Hiera removes are actually *necessary* when training from scratch—hence their introduction in prior work in the first place. Hiera *learns* spatial biases instead.

Significant speedup over concurrent work

Hiera: Simple and fast

Summary: Self-supervised learning from video

- Video offers to learn by space-time prediction of appearance/shape, motion
- Video allows learning from spatiotemporal associations (across modalities)

1. Video MAE

3. Masked Audio-Video Learners

4. Hiera, a fast hierarchical transformer

Self-Supervised Learning from Research Advances to Best Practices

<u>Part 2</u>

Ishan Misra, Mathilde Caron, Mark Ibrahim, Randall Balestriero

ICML 2023

Google Translate

XA Text ■ Images ■ Documents	
Detect language English Spanish French ∨	\leftrightarrow English Spanish Arabic \checkmark
	Translation
Ψ.	0 / 5,000

Introducing ChatGPT

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

Try ChatGPT 7 Read about ChatGPT Plus

Research

Introducing LLaMA: A foundational, 65billion-parameter large language model

February 24, 2023

AI Computer Vision Research

DINOv2: A Self-supervised Vision Transformer Model

A family of foundation models producing **universal features** suitable for image-level visual tasks (image classification, instance retrieval, video understanding) as well as **pixel-level visual tasks** (depth estimation,

"The Dark Matter of Intelligence" — Yann LeCun

One of the most promising ways to build background knowledge and approximate common sense.

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/

Numerous other decisions

Projector type & Dimension

Softmax Temperature

Representation Dimension

Model Architecture

Model Representation Size Training Length Batch Size

Augmentations Evaluation method

Wisdom of Many Self-Supervised Learning **Chefs**

8 institutions

dozen+ researchers

Navigating the families of self-supervised learning methods
 — Ishan

2. Recipes of best practices for training self-supervised learning methods
Mathilde, Mark, Randall

Navigating the families of self-supervised learning methods

Ishan Misra

GenAl @ Meta Al

What is "self" supervision?

- Obtain "labels" from the data itself by using a "semi-automatic" process
- Predict part of the data from other parts
- Train a network using such a prediction task

Why is it useful?

- Training data is "automatically generated"
- Ideally, for a downstream task that we care about, need less human supervision

In the context of Computer Vision

Pretext task

- Self-supervised task used for learning representations
- Often, not the "real" task (like image classification) we care about

Pretext task

- Using images
- Using video
- Using video and sound

Training

- Type of hidden data/property
- Loss function/Training mechanism

Performance based

- Ease of use
- Amount of training/supervision needed for downstream application

Randomly Sample Patch Sample Second Patch

Doersch et al., 2015, Unsupervised visual representation learning by context prediction

Input: image rotated by [0, 90, 180, 270]

→180⁰

Output: 4-way classification

- Masked Image Modeling (MIM)
- Predict missing pixel values

- Masked Image Modeling (MIM)
- Be robust to missing pixels in the input

original

patchify

Similar **Features**

- Invariance
- Be robust to a large class of data augmentations

Training/Loss Function

• Can be quite simple if the target is computed algorithmically

Discrete classification: Cross Entropy Discrete classification: Cross Entropy

Reconstruction of pixels: MSE

Training/Loss Function — Invariance methods

Can be involved

Invariance based learning

• Being invariant to the data augmentation

Learn features such that: $f_{\theta}(I) = f_{\theta}(\operatorname{augment}(I))$

Figure from Dosovitskiy et al., 2014

Why is it useful?

Learn features such that: $f_{\theta}(I) = f_{\theta}(\text{augment}(I))$

Learned features are invariant to "nuisance factors" or data augmentation

Can it work?

Trivial Solutions

Satisfies the invariance property, but not useful

Invariant feature learning - Training/Loss categorization

Based on ways that they avoid trivial solutions

Invariant feature learning: ways to avoid trivial solutions

Similarity Maximization Objective

- Contrastive learning
 - MoCo, PIRL, SimCLR
- Clustering
 - DeepCluster, SeLA, SwAV
- Distillation
 - BYOL, SimSiam, DINO

Redundancy Reduction Objective

- Redundancy Reduction
 - Barlow Twins, VICReg

Many ways to avoid trivial solutions

Similarity Maximization Objective

- Contrastive learning
 - MoCo, PIRL, SimCLR
- Clustering
 - DeepCluster, SeLA, SwAV
- Distillation
 - BYOL, SimSiam

Redundancy Reduction Objective

- Redundancy Reduction
 - Barlow Twins

Contrastive Learning

Groups of Related and Unrelated Images

Contrastive Learning

Contrastive Learning

Loss Function

Embeddings from related images should be closer than embeddings from unrelated images

Contrastive Learning in PIRL

Dataset

Nearby patches vs. distant patches of an Image

Frames of a video

Time

"Sequence" of data

Hadsell et al., 2005, DrLim van der Oord et al., 2018, CPC

Video & Audio

AVID+CMA - Morgado et al., 2020 GDT - Patrick et al., 2020

Tracking Objects

3D Point Clouds

DepthContrast - Zhang et al., ICCV 20235 PointContrast Xie et al., CVPR 2020

Good negatives are necessary

Loss Function

Embeddings from related images should be closer than embeddings from unrelated images

Good negatives are *very* important in contrastive learning

SimCLR

- Large batch size e.g. in SimCLR
- Pros Simple to implement
- Cons Large batch size

Memory Bank

- Maintain a "memory bank" -- momentum of activations
- Pros compute efficient
- Cons Needs large memory, not "online"

MoCo

- Maintain "momentum" network MoCo
- Pros online, improved performance
- Cons extra memory for parameters/stored features, extra fwd pass compared to memory bank

Many ways to avoid trivial solutions

Similarity Maximization Objective

- Contrastive learning
 - MoCo, PIRL, SimCLR
- Clustering
 - DeepCluster, SeLA, SwAV
- Distillation
 - BYOL, SimSiam

Redundancy Reduction Objective

- Redundancy Reduction
 - Barlow Twins

Contrastive Learning => Groups in feature space

Creates groups in the feature space

Clustering creates groups too

Creates groups in the feature space

So does clustering?!

Many ways to avoid trivial solutions

Similarity Maximization Objective

- Contrastive learning
 - MoCo, PIRL, SimCLR
- Clustering
 - DeepCluster, SeLA, SwAV
- Distillation
 - BYOL, SimSiam, DINO

Redundancy Reduction Objective

- Redundancy Reduction
 - Barlow Twins

"Self" Distillation

- What we want $f_{\theta}(I) = f_{\theta}(\operatorname{augment}(I))$
- How we do it $f_{\theta}^{\text{student}}(I) = f_{\theta}^{\text{teacher}}(\text{augment}(I))$
- Prevent trivial solutions by asymmetry
 - Asymmetric learning rule between student teacher
 - Asymmetric **architecture** between student teacher

BYOL

• What we want $f_{\theta}(I) = f_{\theta}(\operatorname{augment}(I))$

SimSiam

• What we want $f_{\theta}(I) = f_{\theta}(\operatorname{augment}(I))$

Many ways to avoid trivial solutions

Similarity Maximization Objective

- Contrastive learning
 - MoCo, PIRL, SimCLR
- Clustering
 - DeepCluster, SeLA, SwAV
- Distillation
 - BYOL, SimSiam

Redundancy Reduction Objective

- Redundancy Reduction
 - Barlow Twins, VICReg

Barlow Twins - Loss

Barlow Twins - Loss

How to evaluate?

Most standard way

Use the pretrained network from self-supervised learning Use some amount of labeled data for the downstream task Measure performance

How to use the labeled data?

Fine-tune all layers

Linear classifier

kNN

How much labeled data to use?

Most important factor

Typically not measured in academic papers

Label-efficient learning

Low-Shot Evaluation on ImageNet-1k

Evaluation on 1% ImageNet-1k

Pretraining time vs. Performance

Semi-Supervised ImageNet-1K 1% Evaluation vs GPU Hours

Label efficient and compute efficient

Are the models useful without any labeled data?

dragon How to train your self-supervised feature extractor ?

Mathilde Caron

@Google Research

Practical use case

You have access to unlabeled data and you want to leverage these to learn a good feature space.

Option 1: Re-use opensourced models

You can directly download SSL models and use them to extract features on your data.

You can choose to download only the weights of the pretrained backbone used for downstream tasks, or the full checkpoint which contains backbone and projection head weights for both student and teacher networks. We also provide the backbone in onnx format, as well as detailed arguments and training/evaluation logs. Note that DeiT= 5 and ViT=5 names refer exactly to the same architecture.

	arch	arch params k-n				download					
,	ViT-S/16	21M	74.5%	77.0%	backbone only	full ckpt	onnx	args	logs	eval logs	
	ViT-S/8	21M	78.3%	79.7%	backbone only	full ckpt	onnx	args	logs	eval logs	
	ViT-B/16	85M	76.1%	78.2%	backbone only	full ckpt	onnx	args	logs	eval logs	
	ViT-B/8	85M	77.4%	80.1%	backbone only	full ckpt	onnx	args	logs	eval logs	
	ResNet-50	23M	67.5%	75.3%	backbone only	full ckpt	onnx	args	logs	eval logs	

We also release XCiT models ([arXiv] [code]) trained with DINO:

arch	params	k-nn	linear	download				
xcit_small_12_p16	26M	76.0%	77.8%	backbone only	full ckpt	args	logs	eval
xcit_small_12_p8	26M	77.1%	79.2%	backbone only	full ckpt	args	logs	eval
xcit_medium_24_p16	84M	76.4%	78.8%	backbone only	full ckpt	args	logs	eval
xcit_medium_24_p8	84M	77.9%	80.3%	backbone only	full ckpt	args	logs	eval

Pretrained models on PyTorch Hub

import torch

vits16 = torch.hub.load('facebookresearch/dino:main', 'dino_vits16')
vits8 = torch.hub.load('facebookresearch/dino:main', 'dino_vits8')
vitb8 = torch.hub.load('facebookresearch/dino:main', 'dino_vitb16')
vitb8 = torch.hub.load('facebookresearch/dino:main', 'dino_vitb8')
xcit_small_12_p16 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_small_12_p16')
xcit_small_12_p8 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_small_12_p8')
xcit_medium_24_p16 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_small_12_p8')
xcit_medium_24_p16 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_medium_24_p16')
xcit_medium_24_p8 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_medium_24_p8')
resent50 = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_medium_24_p8')

However, there might be a domain gap...

• For example, opensourced SSL models is pre-trained on natural looking images:

• But, your data looks like this:

Solution: SSL training on your data

Option 2: Train SSL models on your data

Most SSL algorithms look pretty simple to train :D !

The DINO training algorithm

Code snippet

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# qs, qt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
    t1, t2 = qt(x1), qt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(gs) # SGD
    gt.params = 1*gt.params + (1-1)*gs.params
    C = m * C + (1-m) * cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

Important components for a successful SSL training

<u>Goal</u>: preventing the model from solving the task in a trivial way

How the model finds trivial ways to solve the SSL	and how to prevent it.
Collapse all the representations to a constant output.	Centering+sharpening or Sinkhorn-Knopp normalizations

Collapse to constant output

Centering

Centering

Centering alone -> it still collapses

Centering + sharpening

Important components for a successful SSL training

<u>Goal</u>: preventing the model from solving the task in a trivial way

How the model finds trivial ways to solve the SSL	and how to prevent it.			
Collapse all the representations to a constant output.	Centering+sharpening or Sinkhorn-Knopp normalizations			
Find similar images based on color statistics	Data augmentation			

Data augmentation to prevent solving the task with low-level cues

Two crops from the same image: The model just need to encode color information to predict one from the other.

75

Data augmentation to prevent solving the task with low-level cues

```
ssl_data_augmentation = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.RandomApply(
    [transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.8),
    transforms.RandomGrayscale(p=0.2),
    utils.GaussianBlur(0.1),
    utils.Solarization(0.2),
    normalize,
])
```

Important components for a successful SSL training

<u>Goal</u>: preventing the model from solving the task in a trivial way

How the model finds trivial ways to solve the SSL	and how to prevent it.
Collapse all the representations to a constant output.	Centering+sharpening or Sinkhorn-Knopp normalizations
Find similar images based on color statistics	Data augmentation
Find similar images based on who is located on which hosts/machines	Batch synchronisation

Importance of batch normalization

Images located on the same device are closer together because they share the same batch statistics.

A few more recipes of best practices

Mark & Randall

A Cookbook of Self-Supervised Learning

Randall Balestriero^{*}, Mark Ibrahim^{*}, Vlad Sobal^{*}, Ari Morcos^{*}, Shashank Shekhar^{*}, Tom Goldstein[†], Florian Bordes^{*‡}, Adrien Bardes^{*}, Gregoire Mialon^{*}, Yuandong Tian^{*}, Avi Schwarzschild[†], Andrew Gordon Wilson^{**}, Jonas Geiping[†], Quentin Garrido^{*§}, Pierre Fernandez^{**}, Amir Bar^{*}, Hamed Pirsiavash⁺, Yann LeCun^{*} and Micah Goldblum^{**}

+ Special thanks to Ishan* and Mathilde***

^{*}Meta AI, FAIR ^{**}New York University [†]University of Maryland ⁺University of California, Davis [‡]Universite de Montreal, Mila [§]Univ Gustave Eiffel, CNRS, LIGM ^{*}Univ. Rennes, Inria, CNRS, IRISA ^{italic}Equal contributions, randomized ordering

***Google Research

arxiv > cs > arXiv:2304.12210

https://arxiv.org/abs/2304.12210

🔿 Meta Al

Research

The self-supervised learning cookbook

April 25, 2023

To contribute send us email

<u>marksibrahim@meta.com</u> <u>randallbalestriero@gmail.com</u>

Speeding up your training

SFCV-SSL Public

Fast Forward Computer Vision for Self-Supervised Learning

Speeding up your training

TORCH.TENSOR.BFLOAT16

$$\label{eq:constraint} \begin{split} & \mathsf{Tensor.bfloat16}(memory_format=torch.preserve_format) \to \mathsf{Tensor} \ \mathscr{O} \\ & \mathsf{self.bfloat16}() \ \mathsf{is equivalent to self.to(torch.bfloat16)}. \ \mathsf{See to()}. \end{split}$$

Enables autocasting for the forward
with autocast():

```
output = model(input)
loss = loss_fn(output, target)
```

Distributed Training Gotchas

#1 Sync your batchnorm

model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
Distributed Training Gotchas

#2 Gather & Reduce

Algorithm 1:

1 C	lass Ga	atherLayer(torch.autograd.Function):
2		
3	Gatl	ner tensors from all process and support backward propagation
4	for	the gradients across processes.
5		
6		
7	0sta	aticmethod
8	def	forward(ctx, x):
9		<pre>output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]</pre>
0		dist.all_gather(output, x)
1		return tuple (output)
2		
3	0sta	aticmethod
4	def	<pre>backward(ctx, *grads):</pre>
5		all_gradients = torch.stack(grads)
6		dist.all_reduce(all_gradients)
7		<pre>return all_gradients[dist.get_rank()]</pre>

Forward

torch.distributed.all_gather(output, x)

Backward
torch.distributed.all_reduce(all_gradients)

Other considerations

CNNs or ViTs? Project size? SSL for unbalanced data Standard hyperparameters Extending SSL to other modalities

• • •

Evaluation without labels

RCDM

RankMe

} embeddings' rank

RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank. Garrido et al. 2022 High Fidelity Visualization of What Your Self-Supervised Representation Knows About. Bordes et al. 2022

Evaluation without labels

RCDM

Florian Bordes

https://www.linkedin.com/in/florianbordes/ florian.bordes@umontreal.ca

RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank. Garrido et al. 2022 High Fidelity Visualization of What Your Self-Supervised Representation Knows About. Bordes et al. 2022

Evaluation without labels

Quentin Garrido

Poster

RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank

Quentin Garrido · Randall Balestriero · Laurent Najman · Yann LeCun Exhibit Hall 1 #609

[Abstract]

🗗 Poster 🌖

Thu 27 Jul 7:30 p.m. EDT – 9 p.m. EDT (Bookmark)

Oral presentation: Oral B5 Self/Semi-Supervised Learning and Interpretability / Observing Aspects of NN Wed 26 Jul 10 p.m. EDT – 11:30 p.m. EDT (Bookmark) RankMe

} embeddings' rank

RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank. Garrido et al. 2022 High Fidelity Visualization of What Your Self-Supervised Representation Knows About. Bordes et al. 2022

A Cookbook of Self-Supervised Learning

🔿 Meta Al

Research

The self-supervised learning cookbook

@ICML in person

Vlad

Mark

Quentin

https://arxiv.org/abs/2304.12210

Andrew

Ari

Tom

Randall