

Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer

Dr Dimitris Polychronopoulos (Oncology R&D)
Dr Anna Gogleva (R&D IT)

Global, science-led, patient-focused biopharmaceutical company

Science and innovation-led

Therapy areas of focus:
Oncology;
Cardiovascular,
Renal
& Metabolism;
Respiratory &
Immunology;
Rare Disease

Diversified portfolio with broad coverage across primary care, specialty care and rare diseases

Commitment to people and society

Global strength, with balanced presence across regions

Strategic R&D sites close to global bioscience clusters

San Francisco

Gaithersburg

Focus on main therapy areas and key platforms

Oncology

Cardiovascular, Renal & Metabolism

Respiratory & Immunology

Rare Disease

Combination of capabilities

Small molecul<u>es</u>

Biologics

Protein engineering

Complement inhibition

Other emerging drug platforms

Diagnostics

Devices

Oncology

We are leading a revolution in oncology to redefine cancer care and Data Science plays a critical part

Our clinical strategy is designed to help transform survival

With our portfolio and pipeline we strive to revolutionise cancer care

Catalysing
changes in the
practice of
medicine to
transform the
patient
experience

We are driven by our passion, our people and a culture of innovation

Life-cycle of a medicine

entire life-cycle of a medicine:

- research and development
- manufacturing and supply
- global commercialisation

One needs to fail a lot to discover a working drug

6 - 10 years

It is a tall mountain to climb

- How to develop new efficient treatments faster?
- How to make better decisions in the process?

It is a tall mountain to climb

- How to develop new efficient treatments faster?
- How to make better decisions in the process?
- Recommendation systems can help in multiple places

Recommendation problems in drug discovery

find a gene causing a disease

match a drug with a disease

Drugs, genes, diseases

It gets complex very fast

Millions of compounds
Billions possible theoretically

25-30 K genes, 80 K functional elements

~10 K diseases

It is rarely just a single gene

25-30K human genes

everything interacts with everything, each gene is a suspect

Find a molecular network behind a disease

1) disease ~ a molecular process gone awry

- find the key molecular process
- 3 re-route it safely

Biomedical knowledge is spread across multiple resources

Ensembl

Graph makes things simpler

- Biomedical information often comes in forms of networks and hierarchies
- Graph is a convenient way to organize it
- BIKG (our internal knowledge graph): 60+ data sources including
 omics and data extracted from the literature
- 11 M nodes, 1 B edges
- Use graph as a source of context and features for recommenders

Early success story: graph-based recommendations

Applied recommendation problem: contextualize experimental data

- Drug resistance in lung cancer
- Occurs in a subpopulation of patients
- Resistance landscape is complex

How to help scientist find key genes faster?

An ideal target

•••

An ideal target does not exist

Expression
Pathway/complex enrichment
Effect size
Druggability
Mode of action
✓ Translation in models
✓ Internal assets
✓ Bench validation
Consistency in assays
Clinical relevance
✓ Literature support
Novelty

Target selection as an optimization problem

Hybrid feature set: source features from the graph

Hybrid feature set: combine with clinical features

Approaches

1 Compute exact Pareto Front

level n
...
level 1

3 Matrix factorization

2 Evolutionary algorithms

SkywalkR, interactive interface

- select a subset of objectives
- set optimization directions
- explore tradeoffs

Imperfect validation

Model domain scientist as a black box classifier

Graph-derived features follow clinical in unbiased setting

Annotation by the experts

Most of recommendations are 'novel & credible'

(Gogleva et al, Nat Comms 2022)

Experimental validation *in vitro*

Before treatment

7 days after treatment 14 days after treatment

- confirmed involvement of 6 recommended genes in drug resistance
- next: test the remaining genes

Imperfect, yet already useful recommendation system

- № -> № re-rank lists in seconds, not months
- automated feature generation
- 🍪 approach can be re-used in related problems
- 🔸 峰 now a standard solution for CRISPR screens

Take home message

- Drug discovery is an exciting field for recommender systems
- Relatively simple recommenders can have a lot of impact
- Need for recommenders that can operate in unsupervised or weakly supervised settings
- There are a number of challenges

Acknowledgements

Early Computational Oncology @ AZ

Krishna Bulusu

Ben Sidders

Daniel Barrell

Miika Ahdesmäki

Jonathan R. Dry

R&D IT @ AZ

Vladimir Poroshin

Michaël Ughetto

Eliseo Papa

Bioscience, Oncology R&D @ AZ

Matthias Pfeifer

Ultan McDermott

We are hiring ♥■!

