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Focus on main therapy areas and key platforms

Oncology Cardiovascular, Respiratory & Rare Disease
Renal & Immunology
Metabolism

Combination of capabilities
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Oncology

We are leading a revolution in oncology to redefine cancer
care and Data Science plays a critical part
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We are driven by
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people and a
culture of
innovation
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One needs to fail a lot to discover a working drug
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It is a tall mountain to climb

How to develop new efficient
treatments faster?

How to make better decisions 1n
the process?
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It is a tall mountain to climb

How to develop new efficient
treatments faster?

How to make better decisions 1in
the process?

Recommendation systems can help
in multiple places



Recommendation problems in drug discovery

find a gene causing a disease match a drug with a disease
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Drugs, genes, diseases

Compound



|t gets complex very fast
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It is rarely just a single gene
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Find a molecular network behind a disease
‘ disease ~a molecular process
gone awry

@ Fnd the key molecular
process

@ re-route it SO\‘Pell/




Biomedical knowledge is spread across multiple resources
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Graph makes things simpler

«§ BIKG

Biomedical information often comes
in forms of networks and
hierarchies

Graph is a convenient way to
organize it

BIKG (our 1internal knowledge
graph): 60+ data sources including
- omics and data extracted from the
literature

11 M nodes, 1 B edges

Use graph as a source of context
and features for recommenders



Early success story: graph-based

recommendations




Applied recommendation problem: contextualize experimental data
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How to help scientist find key genes faster?
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An ideal target

<IKIKRJ K

<

Expression

Pathway/ complex enrichment
Effect size

Dmggabﬂi‘ty

Mode of action

Translation in models

Intemal assets
Bench validation
Consis‘te_ncy in assays
Clin?cal re_lernce

Literature Suppor‘t
A/ove_lty



An ideal target does not exist
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Target selection as an optimization problem
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Hybrid feature set: source features from the graph
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Hybrid feature set: combine with clinical features
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Approaches
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SkywalkR, interactive interface
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http://github.com/AstraZeneca/skywalkR

Imperfect validation




Model domain scientist as a black box classifier
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https://www.nature.com/articles/s41467-022-29292-7

Graph-derived features follow clinical in unbiased setting
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https://www.nature.com/articles/s41467-022-29292-7

nnotation by the experts

WWTR1  WW domain containing transcription regulator 1

ENSG00000018408 l.
#Publications of this hit mentioned within the context of resistance’ and 'EGFR": 0 6’8“6 ‘st
#Publications of this hit mentioned wathin the context of ‘resistance’ and 'NSCLC': O

for additional evidence behind the gene recommendation please see goywalkR

[ | Known resistance marker
|| Novel, but credible hit
|_] Novel, not credible hit
|| Not novel, not credible hit 4

please include any additional details about ongoing experiments for
this marker, or if this has been discussed at (pre)TSID.

&

TASK_NUM: 1 TOTAL_TASKS_NUW.: <2

prodigy



Most of recommendations are ‘novel & credible’

WWTR1  WW domain containing transcription regulator 1
ENSG00000018408

#Publicatiors of this hit mentioned within the context of resistance’ and 'EGFR: 0

#Publications of this hit mentioned wathin the context of ‘resistance’ and 'NSCLC': O

for additional evidence behind the gene recommendation please see goywalkR

[ ] Known resistance marker 1

| | Novel, but credible hit 2
[] Novel, not credible hit i}
] Not novel, not credible hit 4

please include any additional details about ongoing experiments for
this marker, or if this has been discussed at (pre)TSID.

&

TASK_NUM: 1 TOTAL_TASKS_NUW.: <2

(Gogleva et al, Nat Comms 2022)
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https://www.nature.com/articles/s41467-022-29292-7

Experimental validation /7 vitro
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https://www.nature.com/articles/s41467-022-29292-7

Imperfect, yet already useful recommendation system
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O% :.: @ CRISPR o\ssw./ \RDE ) Scientists .

. shortlist 3K m |
25-30K genes

ﬁ& -> @« re-rank lists 1n seconds, not months
® automated feature generation

€2 approach can be re-used in related problems
‘& now a standard solution for CRISPR screens
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Take home message ;{?“ -- o @M
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Drug discovery is an exciting field for recommender
systems

e Relatively simple recommenders can have a lot of
impact

« Need for recommenders that can operate in unsupervised
or weakly supervised settings

e There are a number of challenges
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