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Climate change warrants rapid action

Impacts felt globally

Disproportionate impacts on most
disadvantaged populations

Need net-zero greenhouse gas
emissions by 2050 (IPCC 2018)

> Across energy, transport, buildings,
industry, agriculture, forestry, etc.

How does ML fit into this picture?
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The state of climate change

Ea rth h as a l fea dy warm ed over 1°C, Change in global surface temperature (annual average) as observed and
. . ] simulated using human & natural and only natural factors (both 1850-2020)
compared to pre-industrial period o
2.0

Due to excess greenhouse gas (GHG)

emissions from human activities - P
> E.g., carbon dioxide (CO,), o e
methane (CH,), nitrous oxide (N_,O)
simulated
Has induced major changes in climate Gort
» Climate = “average weather” 4
» Extreme heatwaves, precipitation,
droughts, hurricanes, etc. 1850 1700 1750 2000 2020

Figure source: IPCC AR6 WG1 Report (2021)



Rapid action is needed to limit warming

Every tonne of CO, emissions adds to global warming

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO, emissions (GtCO,)
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Figure source: IPCC AR6 WG1 Report (2021)

Speed and scale of systemic
changes affects total warming

Net-zero by 2050 (S5P1-1.9)
limits warming to ~1.5°C



Approaches to addressing climate change

Axes of action
> Climate science: Understanding and predicting climate change
» Mitigation: Reducing or preventing greenhouse gas emissions
» Adaptation: Responding to the effects of a changing climate

Important frameworks
» Climate justice: An equity-centered approach to climate change
» Co-benefits: Explicitly considering linkages between climate
action and other UN Sustainable Development Goals (SDGs)



Approaches to addressing climate change

See NeurlPS tutorials by McKinnon & Poppick
(2021) and Monteleoni & Banerjee (2014)

Axes of action
> Climate science: Understanding and predicting climate change
» Mitigation: Reducing or preventing greenhouse gas emissions
» Adaptation: Responding to the effects of a changing climate

Important frameworks
» Climate justice: An equity-centered approach to climate change
» Co-benefits: Explicitly considering linkages between climate
action and other UN Sustainable Development Goals (SDGs)
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Climate change mitigation

Mitigation: Reducing or preventing GHG emissions

Energy
supply
(indirect)

Total: 59 Gt CO -eq
(2019)

Figure data based on IPCC AR6 WG3 Report (2022). Percentages shown do
not add to exactly 100% due to rounding to two significant figures.
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Climate change mitigation

Mitigation: Reducing or preventing GHG emissions

Energy
supply
(indirect)

Sectors
Energy supply
Transportation
Buildings
Industry
Agriculture
Forestry

Other land use
CO, removal

Total: 59 Gt CO -eq
(2019)

Figure data based on IPCC AR6 WG3 Report (2022). Percentages shown do
not add to exactly 100% due to rounding to two significant figures. 13



Climate change mitigation

Mitigation: Reducing or preventing GHG emissions

Sectors
Energy supply
Transportation
Buildings
Industry
Agriculture
Forestry

Other land use
CO, removal

Energy-related emissions




Mitigation: Energy-related emissions

Conceptual framework based on Kaya identity:

(GHG emissions = population x

service

energy

population

X

service

GHG emissions

energy

J
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Mitigation: Energy-related emissions

Conceptual framework based on Kaya identity:

service energy GHG emissions
GHG emissions = population x X X

population service energy

Reducing consumption

Reduce number of miles driven

Example: Passengercars  » |ndividual change: Move closer to work
Service = vehicle-kilometers » Systemic change: Dense urban areas

Elairy

Increase passengers per trip and vehicle

General energy- Individual behavior changes

related sectors Systemic changes & structural improvements
16



Mitigation: Energy-related emissions

Conceptual framework based on Kaya identity:

service energy GHG emissions
GHG emissions = population x X X

population service energy

Improving efficiency

Example: Passenger cars Improve vehicle efficiency (e.g., fuel economy)

Service = vehicle-kilometers Drive more efficiently

el Switch to other transport modes (e.g., bikes)

General energy- Efficient end-use technologies

related sectors Efficient generation technologies
17



Mitigation: Energy-related emissions
Conceptual framework based on Kaya identity:

service energy GHG emissions
GHG emissions = population x X X

population service energy

Switching to clean energy

Switch to battery electric vehicles
Example: Passenger cars

Service = vehicle-kilometers  Switch to alternative fuels (e.g., electrofuels,
s solar fuels, hydrogen)

General energy- Electrify & switch to low-carbon power

related sectors Replace fossil fuels with clean alternative fuels

18



Mitigation: Energy-related emissions

Conceptual framework based on Kaya identity:

service energy GHG emissions
GHG emissions = population x X X
population service energy
Reducing consumption Switching to clean energy

Improving efficiency

19



Climate change mitigation

Mitigation: Reducing or preventing GHG emissions

Sectors
Energy supply
Transportation
Buildings
Industry
Agriculture
Forestry

Other land use
CO, removal

Energy-related emissions

Land use (AFOLU) emissions

20



Mitigation: Land use emissions

GHG emissions result from (e.g.)

g ol W o " W)
> Land use changes (forests, peatlands, etc.) %w _z::v;:ﬁ:ﬁ;o"s(~z°> i)
> Fertilizer use I o N
» Livestock S [ oo

% 10 — — —
Complex to assess effects of interventions i | = = =
> Natural systems are in complex carbon cycle § 6
> |Interactions between climate system, .

natural factors, socioeconomic factors ;

Figure source: IPCC AR5 WG3 Report (2014) 21



Example mitigation strategi

GHG emissions result from (e.g.): Land use changes

Natural systems Agriculture

Prevent deforestation Reduce fertilizer use
Preserve peatlands and Reduce cows and other
coastal wetlands ruminant animals

Protect biodiversity Improve land management

Protect indigenous rights

Monitoring: E.g., via remote sensing

See also: IPCC AR5 WG3 Report (2014) and IPCC AR6 WG3 Report (2022)

es: Land use

Fertilizer use Livestock

Demand-side measures
Reduce losses in food
supply chain

Dietary change

Change wood
procurement practices

22



Climate change mitigation

Mitigation: Reducing or preventing GHG emissions

Sectors
Energy supply
Transportation
Buildings
Industry
Agriculture
Forestry

Other land use
CO, removal

Energy-related emissions

Land use (AFOLU) emissions

“Negative emissions”
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Mitigation: Negative emissions strategies

Negative emissions strategies remove CO, from the atmosphere

> Carbon capture and storage (CCS): Use sorbents to capture CO,
from exhaust or directly from air
> Related: Bioenergy with carbon capture and storage (BECCS)
» Enhancing natural sinks: Afforestation, reforestation, soil carbon
restoration, peatland restoration, etc.

» Biochar: Pyrolize plant materials & store underground

24



Climate change mitigation

Mitigation: Reducing or preventing GHG emissions

Sectors
Energy supply
Transportation
Buildings
Industry
Agriculture
Forestry

Other land use
CO, removal

Energy-related emissions

Land use (AFOLU) emissions

“Negative emissions”
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Total GHG emissions

Economy-wide strategies to limit total GHGs

Targets (mandatory or voluntary)
> International: UNFCCC and COP (Kyoto Protocol, Paris Agreement)

» At national or sub-national levels
Regulation, standards, and investments

Carbon pricing
> Carbon tax: Tax per unit of CO, or CO_-eq emissions
> Carbon markets: Emissions trading under some agreed-upon CO_-eq
cap (i.e., cap-and-trade or emissions trading system)

26



Approaches to addressing climate change

Axes of action
> Climate science: Understanding and predicting climate change
> Mitigation: Reducing or preventing greenhouse gas emissions
» Adaptation: Responding to the effects of a changing climate

Important frameworks
» Climate justice: An equity-centered approach to climate change
» Co-benefits: Explicitly considering linkages between climate
action and other UN Sustainable Development Goals (SDGs)
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Climate impacts and downstream effects

Climate impacts Downstream effects

® Rising temperatures ® Droughts and heatwaves

/ »® More intense storms and flooding
® Changing precipitation patterns More frequent wildfires
Loss of ecosystem services

Biodiversity loss
® Rising sea levels

Spread of disease vectors and pests

® Qcean acidification

Figure adapted from Kris Sankaran
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Climate change adaptation

Adaptation: Responding to the effects of a changing climate

30



Climate change adaptation

Adaptation: Responding to the effects of a changing climate

1. Measuring and predicting risks
» Risk: Impact x probability

(c) Annual mean precipitation change (%) Precipitation is projected to increase over high latitudes, the equatorial
Pacific and parts of the monsoon regions, but decrease over parts of the

relative to 1850-1900 subtropics and in limited areas of the tropics.

Simulated change at 2°C global warming Simulated change at 4°C global warming

Simulated change at 1.5°C global warming

: FEol
T
\“{F\:\ \m \ %04;

- \ X \‘/C) k\

J/“/\

Relatively small absolute changes —

may appear as large % changes in <. _40 -30 -20 -10 0 10 20 30 40 >
regions with dry baseline conditions

Figure source: IPCC AR6 Summary for Policymakers (2021)
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Climate change adaptation

Adaptation: Responding to the effects of a changing climate

1. Measuring and predicting risks Human & ecological systems

» Risk: Impact x probability BV 0 @Mﬁmwﬂm

2. Strengthening adaptive capacity g’ +7
» Robustness: Withstanding a range of Connections with UN SDGs
outcomes with no/minimal impact
» Resilience: Recovering quickly after
impact

Figure source (bottom): United Nations



Solar geoengineering

“Cool the planet” by increasing the — =

Earth’s albedo (reflectivity) |

» E.g., Release stratospheric aerosols to
increase reflectance for a few years

Viewed as last resort: Uncertainty, moral
hazard, termination shock, governance

Figure source: CarbonBrief.org
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Takeaways: Introduction to climate change

Rapid action is needed on climate change
> Climate science: Understanding and predicting climate change
» Mitigation: Reducing or preventing greenhouse gas emissions
» Adaptation: Responding to the effects of a changing climate

Important frameworks
» Climate justice: An equity-centered approach to climate change
» Co-benefits: Explicitly considering linkages between climate
action and other UN Sustainable Development Goals (SDGs)
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Tutorial outline

Introduction to climate change
Opportunities for ML in climate action

Research challenges
» Physics-informed and robust ML
» Interpretable ML and uncertainty quantification
» Generalization and causality

Is ML a help or hindrance for climate action?
Considerations for research and deployment

Takeaways and how to get involved

Roles for ML in
climate action

Considerations
in evaluating
applications
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1. Distilling raw data

Role: Distilling raw data into actionable information

Some relevant ML areas: Computer vision, natural language processing

Examples

> Mapping deforestation and carbon stock [M]

» Gathering data on building footprints/heights [M]
» Evaluating coastal flood risk [A]

» Parsing corporate disclosures for climate-relevant info [A]
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2. Optimizing complex systems

Role: Improving efficient operation of complex, automated systems

Some relevant ML areas: Optimization, control,
reinforcement learning

Examples

» Controlling heating/cooling systems efficiently [M]
> Optimizing rail and multimodal transport [M]
> Demand response in electrical grids [M]

Note: Beware of misaligned objectives and rebound effects

40



3. Improving predictions

Role: Forecasts and time series predictions

Some relevant ML areas: Time series analysis, W
computer vision, Bayesian methods _ﬂ
Examples

> “Nowcasting” for solar/wind power [M]
> Forecasting electricity demand [M]

> Predicting crop yield from remote sensing data [A]

41



4. Accelerating scientific discovery

Role: Suggesting experiments in order to speed up the design process

Some relevant ML areas: Generative models, I
active learning, reinforcement learning, |
graph neural networks

Examples

> |dentifying candidate materials for batteries, photovoltaics,
and energy-related catalysts [M]

> Algorithms for controlling fusion reactors [M]
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5. Approximating simulations

Role: Accelerating time-intensive, often physics-based, simulations

Some relevant ML areas:
Physics-informed ML, computer vision,
interpretable ML, causal ML

Examples

» Superresolution of predictions from climate models [A]
> Simulating portions of car aerodynamics [M]

» Speeding up planning models for electrical grids [M]
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Questions that we asked in identifying priorities

> Is ML needed to address the problem?

> What is the scope of the impact? (in rough terms)

> What is the time horizon of the impact?

> What is the likelihood that a solution can be found?

» Can a solution feasibly be deployed?

> What are the potential side effects of deploying the candidate solution?

> Who are the relevant stakeholders who are involved in or affected by
the application?
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Key considerations

ML is not a silver bullet and is only relevant sometimes
High-impact applications are not always flashy
Sophisticated algorithms can be required, but aren't always

Interdisciplinary collaboration

> Scoping the right problems
> Incorporating relevant domain information
» Shaping pathways to impact

Equity considerations

» Empowering diverse stakeholders
» Selecting and prioritizing problems
» Ensuring data is representative

46
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Physics & engineering are central to climate action
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design to low-GHG renewables & preventing
E options % ~ overstocking
& ¢ Q 0

L Inventing Optimizing Improving "Adaptive ‘Streamlining Reducing
clean materials supply chains quality control heating and transport of
and catalysts f w cooling perishables

|9

Buildings & cities

Urban environmental simulations
Building heating & cooling control

[ new infrastructure (unsustainable)

jathering infrastructure data
I new infrastructure (sustainable) € g

M existing infrastructure %

modeling buildings energy S

3D building models

optimizing HVAC
modeling energy across buildings

data for smart cities

transfer
knowledge

efficient sensing
targeted retrofit strategies

smart buildings

low-carbon infrastructure

Land use (agriculture)

Precision agriculture . .
Cleaner ammonia production

Remote sensing
of emissions
\\//
Estimating

carbon stock

. Managing
Automating  forest fires
afforestation |\ |

Precision
agriculture

Monitoring
peatlands

Reducing
deforestation

Farmland Peatland
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Types of {physics, engineering} + ML approaches

Physics-informed approaches:
Improve performance and/or data efficiency by employing physical
knowledge or priors

Robust and safety-critical approaches:
Ensure adherence to system requirements (e.g., engineering constraints)
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Types of {physics, engineering} + ML approaches

Physics-informed approaches:
Improve performance and/or data efficiency by employing physical
knowledge or priors

Robust and safety-critical approaches:
Ensure adherence to system requirements (e.g., engineering constraints)
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Why physics-informed ML?

Physics-based
approaches

“Pure” ML
approaches

Hybrid approaches

Efficiently
leverage physical
knowledge

Transparent &
robust behavior

Adaptive,
data-driven

Fast to run

X

Caveat: This is an oversimplification!
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Example: Emulating subgrid-scale processes

Difficult to cheaply represent subgrid-scale processes in coarse-scale atmospheric
models (“subgrid parameterization”), while respecting conservation laws

Approach: Design NN-based emulator, with architecture constrained to satisfy
conservation laws

Optimize using all Outputs

]

I

|
Inputs Direct Outputs Residual Outputs
1 Standard [ N -| Constraints Yp—n+1
D — NN Layers
Tom (Optimizable) [y[)_le (Fixed) Yy
L )
Inputs fed to Constraints Layers

See related challenge: Climate Bench (emulating Earth System Models)

Beucler, T, et al. (2021). Enforcing analytic constraints in neural networks emulating physical systems. Physical Review Letters, 126(9), 098302.
See also: Kashinath, K., et al (2021). Physics-informed machine learning: case studies for weather and climate modelling. Philosophical Transactions of the Royal Society

A, 379(2194), 20200093. 53


https://github.com/duncanwp/ClimateBench

Example: Modeling building dynamics

Modeling dynamics of buildings can be difficult & expensive, but is needed for
implementing simulators and/or control strategies

Approach: Learn differentiable surrogate using physics-informed ML model
» Can employ within end-to-end “differentiable predictive control” workflow

Building model structure

, |
| |
.
B See related platforms: COBS
| q (building control) and City
| P Learn (city-scale control)
|| Actuators 2 HVAC : :
 —
(a) Structure of physics-based building thermal model. (b) Structured recurrent neural dynamics model.

Drgonia, J., Tuor, A. R., Chandan, V., & Vrabie, D. L. (2021). Physics-constrained deep learning of multi-zone building thermal dynamics. Energy and Buildings, 243, 110992.
Drgonia, J., Tuor, A., Skomski, E., Vasisht, S., & Vrabie, D. (2021). Deep learning explicit differentiable predictive control laws for buildings. IFAC-PapersOnLine, 54(6), 14-19.
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https://github.com/sustainable-computing/COBS
https://github.com/intelligent-environments-lab/CityLearn
https://github.com/intelligent-environments-lab/CityLearn

Directions: Physics-informed ML and climate change

Incorporating more complex constraints into
architectures and losses

Improving stability & convergence of E.g., Power grids: DC power flow
physics-informed model training (linear) > AC power flow (nonlinear)

Improving data representations to capture
physical considerations

Improving out-of-distribution generalization -
(See alsp tu.torlal section: . Research challenges: Fe. Cubea-gpli\e”} egrid
Generalization and causality) data representation

Cubed-sphere grid figure source: Weyn, J. A, Durran, D. R., & Caruana, R. (2020). Improving data-driven global weather prediction using deep convolutional neural
networks on a cubed sphere. Journal of Advances in Modeling Earth Systems, 12(9), €2020MS0021009.
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Types of {physics, engineering} + ML approaches

Physics-informed approaches:
Improve performance and/or data efficiency by employing physical
knowledge or priors

Robust and safety-critical approaches:
Ensure adherence to system requirements (e.g., engineering constraints)
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Example notions of “robustness” in ML and climate

Adversarial robustness [ML]: Robustness to u u
perturbations of inputs .

e s'gnmz”»
Safe reinforcement learning [ML]: Avoid error states IR
or catastrophic scenarios e

(a) (b)

Robust control [e.g., power systems, buildings]: Bring
system to an equilibrium (e.g., Lyapunov stability)

Adversarial robustness figure source: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. ICLR.

Safe RL figure source: Garcia, J., & Fernandez, F. (2015). A comprehensive survey on safe reinforcement learning. JMLR, 16(1), 1437-1480. 7



Example: RL for robust power grid control

Want to control power system devices in a robust manner
> Notion of robustness: Lyapunov stability [robust control]

Ideas

» Enforce Lyapunov stability guarantees in NN architecture
> Mix between robust and untrusted controllers

(b) Structure of the Stabilizing Controller ? U nt ru Ste d
f s TP (performant)

a) Power Grid (c) RNN based Framewor| Kk o ! .
(@) for Efficient Training System state | Bl
action

'SR
> 2
wio) [P | 25 |
[ |
i o g |
= I
Feedback Control Optimal | .ee o ¥ ‘
o) T Ll,, @) Weights T l Controller Ifﬁr » » ﬁ =.E ﬁ‘
(@, . ! O'N ||
) 2=
4
—

| v Trusted
e | (robust)

Cui, W., Jiang, Y., & Zhang, B. (2022). Reinforcement learning for optimal primary frequency control: A Lyapunov approach. I[EEE Transactions on Power Systems.
Donti, P. L., Roderick, M., Fazlyab, M., & Kolter, J. Z. (2021). Enforcing robust control guarantees within neural network policies. ICLR.
Rutten, D., Christianson, N., Mukherjee, D., & Wierman, A. (2022). Online Optimization with Untrusted Predictions. arXiv preprint arXiv:2202.03519.
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Example: Adversarially robust power grid optimization

Intractable to dispatch power generators to be robust to k failures (N-k SCOPF)
» Notion of robustness: Feasibility against contingency constraints [optimization]

Approach: Re-cast as an adversarially robust optimization problem [ML-style]
» “Solve” using adversarial training techniques (plus implicit layers)

minimize maximize ¢ ( &, 3% )
P

&

See related challenge: ARPA-E GO Competition (secure power system optimization)

Donti, P. L., Agarwal, A., Bedmutha, N. V., Pileggi, L., & Kolter, J. Z. (2021). Adversarially robust learning for security-constrained optimal power flow. Neur/PS.
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https://gocompetition.energy.gov/

Takeaways: Physics-informed and robust ML

Many fruitful directions for merging physics & engineering knowledge
with ML approaches, with benefits across many climate-relevant areas

Physics-informed approaches: Accommodate new and more complex
physics within data, deep learning architectures, and loss functions

Robust and safety-critical approaches: Implement, exchange, and/or
combine notions of robustness from ML and climate-relevant domains

Deep domain understanding can yield new methodological directions
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Introduction to climate change
Opportunities for ML in climate action

Research challenges
» Physics-informed and robust ML
> Interpretable ML and uncertainty quantification
» Generalization and causality

Is ML a help or hindrance for climate action?
Considerations for research and deployment

Takeaways and how to get involved



Interpretability and uncertainty in climate change

Climate change mitigation and adaptation require trust and robust decision-making

-40 -30 -20 -10 0 10 20 30 40
Percent change from 1850-1900 average

Scientific understanding and Monitoring, reporting, and verification of Early warning and
predictions of climate change emissions and climate change effects eémergency response

Nations Unies

Changements Climatj

ques
COP21/CMPp11

Policy-making on international, Planning and operation Innovation and technology
national, and local levels of critical infrastructure assessment



Interpretability and uncertainty in climate change

[
f-;‘ Interpretability aims:

Oversight Regulatory oversight and recourse
Real-time settings: Intervening & overriding model outputs
Domain-informed model debugging

Credibility Allowing stakeholders to decide whether to trust

Scientific discovery Working with and expanding domain knowledge

\AUncertainty quantification aims:

Assessing risks Input to making robust decisions

Communication Avoiding overconfidence and increasing credibility o



Examples

ﬁ? Ocean sub-grid scale modeling with
equation-discovery

XRD patters in the
composmon space
Bi

reasoning networks

[
"’;l Crystal-structure phase mapping with deep /

) i e vy}
":';l Bird species classification with a prototypical part a .

network

\A Net load forecasting with Bayesian deep learning

Net Load (kW)
8 8



ﬂ';' Example 1: Ocean sub-grid scale modeling with
equation-discovery

Human-in-the-loop guidance and scientific interpretation may help improve ML-based
emulators for subgrid-scale processes within coarse-grained climate models

Approach: (Interpretable) hybrid symbolic equation-discovery approach
» Compared to (physics constrained) neural networks, generalizes better to unseen

flow regimes

KE density snapshots for selected parameterizations
Lowres FCNN(G-S{)  Hybrid Symbolic BSCAT(.007,1.2)
c 4 r D - E - - " e

» -
W

0.015

# |[0.0105"
NV)

0.005 &

0.000

—

0.0107
i
0.005 &

Latitude

— %0.000

Longitude

Ross, Li, Perezhogin, Fernandez-Granda & Zanna (in review) Benchmarking of machine learning ocean subgrid parameterizations in an idealized model
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ﬂ';' Example 2: Crystal-structure phase mapping with deep
reasoning networks

Discovery of solar fuel materials requires separating noisy

mixtures of X-ray diffraction patterns into source signals of 2 oo spacs.
the corresponding crystal structures (unsupervised pattern A
demixing problem)
Approach: (Interpretable) deep reasoning network

» Exploiting scientific prior knowledge about rules that /

govern the mixtures of crystals " e / Y
> Interpretable latent space constructed with scientific 2 10 T ——
§ 0%

variables that are learned in an unsupervised setting

aia AUA A A NN AN A

o :

15 20 25 30 35 40 45
Scattering vector magnitude, g (nm™)

Chen, D., Bai, Y., Ament, S., Zhao, W., Guevarra, D., Zhou, L., ... & Gomes, C. P. (2021). Automating crystal-structure phase mapping by combining deep learning with
constraint reasoning. Nature Machine Intelligence, 3(9), 812-822.
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ﬁ' Example 3: Bird species identification
with a prototypical part network

Computer vision can help with ecosystem monitoring as the habitats of species change
with a changing climate

Approach: Interpretable prototypical part network for bird species identification

reasons in a similar way to ornithologists
» Explanations generated are used during classification and are not created posthoc

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., & Su, J. K. (2019). This looks like that: deep learning for interpretable image recognition. Advances in neural information
67

processing systems, 32.



\A Example 4: Net load forecasting with
Bayesian deep learning

Residential net electricity load is uncertain due
to climate variability, variable power generation s -

. 70%
90%

and aperiodic human activities

400

Approach: Bayesian theory combined with
deep LSTM networks for probabilistic
day-ahead net load forecasts

Net Load (kW)
w
o
o

200 |1 |

100

» Using smart meter data and (partially
available) PV Outp ut data & 48 96 144 192 240 288 336 384 432 480

Time (0.5 hour)

Sun, M., Zhang, T., Wang, Y., Strbac, G., & Kang, C. (2019). Using Bayesian deep learning to capture uncertainty for residential net load forecasting. IEEE Transactions on

Power Systems, 35(1), 188-201. 68



Takeaways: Interpretable ML &
uncertainty quantification

» Decision-making and discovery crucial for many areas of climate
change: need for interpretability and uncertainty quantification

» Domain-specific goals should drive the specific notion of
interpretability used

» Lack of documented use cases from practice where interpretability and
uncertainty quantification in ML is used for improving decision-making

» Research challenge: user-focused method development

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Machine Intelligence, 1(5), 206-21¢

Amarasinghe, K., Rodolfa, K., Lamba, H., & Ghani, R. (2020). Explainable machine learning for public policy: Use cases, gaps, and research directions. arXiv:2010.l437469
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Several notions of generalization

MOSAIKS
I_ ResNet-18

» Generalization across tasks

» Generalization under concept drift

» Generalization from limited data

, TN
1

0 1000 2000 3000 4000 5000
Sorted Species
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Generalization across tasks

Contexts include:

» Performing a similar task across geographies or communities,
e.g. classifying land cover or predicting power demand
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Generalization across tasks

Contexts include:

» Performing a similar task across geographies or communities,
e.g. classifying land cover or predicting power demand

Strategies include:

» Data embeddings designed for fast transfer to new tasks
> Meta-learning algorithms
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Generalization across tasks

Contexts include:

>

Performing a similar task across geographies or communities,
e.g. classifying land cover or predicting power demand

Strategies include:

) >

>

Data embeddings designed for fast transfer to new tasks
Meta-learning algorithms

74



Example: Task-agnostic features for satellite images

Unsupervised featurization of satellite images 1 | e

MOSAIKS: Convolutional "random kitchen sink,"

|— Pre-trained CNN

: : : & 051
then apply nonlinear function & average over pixels |
Ridge regression on features almost matches 0-
%ﬁ@& %18 ’%'Of//%‘%e‘ ?"‘o '?o@o %OJ‘/
task-specific ResNets on wide array of tasks s 7%, s,

draw a fixed sample of K patches
from image set

K nonlinear

convolve patches activation maps

across each image 2 -
) 9 K-dimensional

27 4 apply nonlinear = average feature vector X,
s function k4] over pixels
» » [ X1 o Xk J

E. Rolf et al., "A generalizable and accessible approach to machine learning with global satellite imagery," Nature Communications 2021. .



Generalization across tasks

Contexts include:

>

Performing a similar task across geographies or communities,
e.g. classifying land cover or predicting power demand

Strategies include:

>

) >

Data embeddings designed for fast transfer to new tasks
Meta-learning algorithms
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Example: Task-informed meta-learning

Remote sensing to map crops &
forecast yield can help avoid food
insecurity under climate change, but
data are imbalanced by location/crop

TIML builds in location/task metadata
to meta-learning via a task encoder 4

. tgn ] Hidden layer n ]
Added to MAML/other meta-learning ek evescen e —
methods to improve performance on . ] AV o
B
classification & regression tasks N\ Outroopptmaton /X1

G. Tseng, H. Kerner, D. Rolnick, "TIML: Task-Informed Meta-Learning for agriculture," arXiv 2202.02124, 2022.

G. Tseng, et al., "CropHarvest: A global dataset for crop-type classification,” NeurlPS 2021 Datasets and Benchmarks Track. 77



Generalization across tasks

Contexts include:

» Performing a similar task across geographies or communities,
e.g. classifying land cover or predicting power demand

Strategies include:

» Data embeddings designed for fast transfer to new tasks
> Meta-learning algorithms
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Generalization across tasks

Contexts include:

» Performing a similar task across geographies or communities,
e.g. classifying land cover or predicting power demand

Strategies include:

» Data embeddings designed for fast transfer to new tasks
> Meta-learning algorithms
» Treating tasks separately and ensuring enough data for each

See Birhane et al. "The Values Encoded in Machine Learning Research," FAccT 2022.

79



Generalization under concept drift

Contexts include:

» Climate & weather data

» Things affected by climate change, e.g. mapping crops,
assessing species distributions, predicting energy supply

Strategies include:

> Physics-informed models that generalize better to new regimes
(see also tutorial section: “Research challenges: Physics-informed and robust

» MUHthetic data from physics-based simulations
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Generalization from limited data

Contexts include:

» Long-tailed data distributions, e.g. identifying species from photos

> Rare or extreme events, e.g. predicting wildfires or hurricanes

Strategies include:

» Algorithms designed to learn from imbalanced/few-shot data
> Unsupervised or self-supervised algorithms for anomaly detection
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Generalization from limited data

Contexts include:

mm) > Long-tailed data distributions, e.g. identifying species from photos

> Rare or extreme events, e.g. predicting wildfires or hurricanes

Strategies include:

=) > Algorithms designed to learn from imbalanced/few-shot data
> Unsupervised or self-supervised algorithms for anomaly detection
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Example: Data from citizen science observations

iNaturalist dataset: citizen-science observations of animals, plants, etc.
used to assess changing biodiversity, labeled by domain experts

Fine-grained classification:
859,000 images, 5,000
classes, many very similar

Long tails in distribution
from rare or rarely
observed species

0 1000 2000 3000 4000 5000
Sorted Species

Benchmark for highly imbalanced visual classification & localization

G.Van Horn et al., "The iNaturalist species classification and detection dataset," CVPR 2018.
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Generalization from limited data

Contexts include:

>

) >

Long-tailed data distributions, e.g. identifying species from photos

Rare or extreme events, e.g. predicting wildfires or hurricanes

Strategies include:

» Algorithms designed to learn from imbalanced/few-shot data

) >

Unsupervised or self-supervised algorithms for anomaly detection
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Example: Detecting avalanches using VAEs

Avalanches are rare events, so few annotated images of them

Can use VAE reconstruction error to find anomalies, often avalanches

Pre-processed SAR
(VV and VH)
- 5

Sentinel-1 mean vector

L

EPA Ground _truth
avalanche labelling
inventory
+ =
corridors
map

I,l sampled
Iatent

vector 64xe4><4
_
Reconstructed

Input

o

std dev vector

2 Reconstruction Error

> thresholg Av?he
: A
NG
¥

avalanche

S. Sinha et al, "Detecting avalanche deposits using variational autoencoder on sentinel-1 satellite imagery," Tackling Climate Change with
Machine Learning workshop at NeurlPS 2019.
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Causality and ML

In complicated physical systems, e.g. climate & weather models

» Identifying causal relations between variables, e.g. teleconnections
> Attributing causes to rare/extreme events
» Assessing the strength of relations in a known causal graph

In settings where policy decisions must be made

» Predicting optimal interventions under known or inferred causal models
» Estimating the causal effect of implemented policies

J. Runge et al., "Inferring causation from time series in Earth system sciences," Nature Communications.

S. Athey. Beyond prediction: "Using big data for policy problems," Science.
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Example: Quantifying aerosol-cloud interactions

Clouds affect the climate and are in turn
affected by aerosols in the atmosphere

Causal graph structure for aerosol-cloud O
interactions is known, but is mediated by ®-
the local environment in unknown ways -

o
0
Q
©

AOD Aerosol optical depth

The Quince deep learning-based e, S | S G, St
causal-effect estimator can predict the
strengths of these causal relations from data

CFw Warm Cloud Fraction
r, Effective radius

A. Jesson et al., "Using non-linear causal models to study aerosol-cloud interactions in the southeast Pacific," Tackling Climate Change
with Machine Learning workshop at NeurlPS 2021.

A. Jesson et al., "Quantifying ignorance in individual-level causal-effect estimates under hidden confounding," ICML 2021.
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Takeaways: Generalization and causality

Important climate change applications lead to interesting
methodological challenges related to generalization and causality

Generalization-related challenges can arise from geographic variation,
nonstationarity, and imbalanced data or rare events

Causality-related challenges can arise in understanding complicated
physical systems and in working with policy interventions
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What is ML’s
carbon
footprint?

What can one do
to shape the
overall impact?



ML’s carbon footprint

ML applications
in climate change
mitigation

Emissions from
ML computation
& hardware

ML’s system-level
impacts
ML applications
that increase
emissions

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,
1-10. 90



ML’s carbon footprint

ML applications
in climate change
mitigation

Emissions from
ML computation
& hardware

ML’s system-level
impacts
ML applications
that increase
emissions

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,
1-10. 91



Emissions from ML computation

100M - iy
Rail car
of coal
10M - A
- (5 )
Yearly home
o
[ 1]
’go 100k -  — Ff;r;ﬁl
= |
= =
© N Lo
g 10k
8 Gall f
allon o
O i~ |—] . —_— gasoline
= =
=)
100 - Mile
drive
=
10- —
Phone
i charge
BERT BERT 6B Dense Dense Dense ViT ViT ViT ViT ViT
finetune LM transf 121 169 201 tiny small base large huge

Model
CO2 Relative Size Comparison

Dodge, J., Prewitt, T., Tachet des Combes, R., Odmark, E., Schwartz, R., Strubell, E., ... & Buchanan, W. (2022, June). Measuring the Carbon Intensity of Al in
Cloud Instances. In 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 1877-1894). 92



Impacts from ML computation & hardware

Efficient compute,

Operational o renevabiecnerey
an eman
emissions from

flexibility
energy consumed
during computation

nnln e
lnnns“‘

Embodied emissions ==

from productionand & |

end-of-life of
hardware
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Computing-related emissions from ML

—~ USE PHASE

Inference Training Development
M Inference run
Training epoch H---B
[ Training run H---H| |-
™ | NN |-
Energy per run O NN -0 .-
H-E(m-
B
N
e °
Frequency of runs BT .
o o
. . .
Very frequent Frequent to infrequent Infrequent to rare

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with
climate change mitigation. Nature Climate Change, 1-10.
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Computing-related emissions from ML

Al-related i
Operational
Other ICT Embodied
& other
Large data  Distributed
ICT sector centres compute
~— USE PHASE
B Inference ran Inference Training Development
__| Training epoch 1
[J Training run
[ B |
Energy per run | W--|
Frequency of runs N ..1,':. .
Very frequent Frequent to infrequent Infrequent to rare

Global GHG
emissions

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with

climate change mitigation. Nature Climate Change, 1-10.



ML’s carbon footprint

ML applications
in climate change
mitigation

Emissions from
ML computation
& hardware

ML’s system-level
impacts
ML applications
that increase
emissions

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,
1-10. 9%



See tutorial
section
“Opportunities for
ML in climate
action”

Immediate application impacts

Role of machine learning

Data mining & remote sensing

Accelerated experimentation

Fast approximate simulation

Forecasting

System optimization and control

Predictive maintenance

GHG emissions impact

Policy design, monitoring, and enforcement
(e.g. GHG tracking, infrastructure maps)

R&D for low-carbon technologies
(e.g. photovoltaics, batteries)

Planning and design of relevant systems
(e.g. urban infrastructure, carbon markets)

System operation and efficiency
(e.g. heating & cooling, electricity grid)

Accelerating emissions-intensive activities
(e.g. oil & gas exploration, cattle-farming)

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,

1-10.
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Broader scope of application impacts

Example: Efficiency improvements in crude oil refining

» Crudeoilis turned into lighter hydrocarbons by heat
from coker units

» Accurately predicting coke buildup in pipes with ML can
help maintain equipment and reduce energy
consumption

» This application of ML is reducing emissions in the
refinery

» The application is also reducing costs

» We need to consider how the application affects
emissions from the energy and economic system as a
whole
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ML’s carbon footprint

ML applications
in climate change
mitigation

Emissions from
ML computation
& hardware

ML’s system-level
impacts
ML applications
that increase
emissions

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,
1-10. 99



System-level impacts of ML

Reducing energy consumption reduces costs > money saved
Rebound effects may be used and cause more emissions
Example: ML for optimizing systems

Technologies compete and dominate > lock-in to suboptimal
technologies hampering decarbonization
Example: Autonomous driving and car use

Lock-in and path
dependency

Trends and advertising may change consumption patterns >
Consumer behavior | €mbodied emissions in those products
Example: ML in advertising and social media

Communication and | Societal support for climate action essential
education Example: ML on social media
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ML’s carbon footprint

ML applications
in climate change
mitigation

Emissions from
ML computation
& hardware

ML’s system-level
impacts
ML applications
that increase
emissions

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,
1'10. 101



Overall framework
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Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change,

1-10.
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Takeaways: Climate change impacts of ML

Computing-related:
> Measure your footprint with tools such as ML CO2 Impact,

Carbontracker, CodeCarbon, or tools specifically for Azure or Hugging
Face

» Reduce your impacts by choosing more efficient models, and reducing
wasteful model retraining and execution

Application-related:
» Quantify and evaluate the application impacts where possible
» Betransparent about impacts in publications and with stakeholders
(quantitatively and qualitatively)
» Shape the impacts through your work
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https://mlco2.github.io/impact/
https://github.com/lfwa/carbontracker
https://codecarbon.io
https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923
https://huggingface.co/blog/carbon-emissions-on-the-hub
https://huggingface.co/blog/carbon-emissions-on-the-hub

Takeaways: Climate change impacts of ML

Consider the system-level impacts of your work:

» All ML applications may potentially have an effect on the climate (e.g.
recommender systems)

» Choose what you (or the ML community) works on

» Bring climate considerations into how you build an application

» Initiate company-wide policies such as internal carbon pricing or
conditions on the projects or products realized

» Don’t forget about other social and other environmental impacts

104



Tutorial outline

Introduction to climate change
Opportunities for ML in climate action

Research challenges
» Physics-informed and robust ML
» Interpretable ML and uncertainty quantification
» Generalization and causality

Is ML a help or hindrance for climate action?
Considerations for research and deployment

Takeaways and how to get involved

Considerations
for ML-for-climate

Considerations
for ML as a whole



ML-for-climate: Pathway to impact
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Not an “easy benchmark” field...

.. but yields many opportunities
to ask important & novel
research questions
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Developing data, simulators, and metrics

Data: Collection, annotation, collation, inference, and/or licensing
» Note: “Data” can mean different things to different communities

Simulators: Needed for innovations in physical domains
» E.g., power systems, transport, buildings, heavy industry

Evaluation metrics: Need agreement and iteration from ML researchers,
domain researchers, deployers, and other affected stakeholders

Resources and venues
> CCAl dataset wishlist (www.climatechange.ai/dataset-wishlist.pdf)
> Lacuna Fund funding for climate datasets
> NeurlPS Datasets and Benchmarks track
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http://www.climatechange.ai/dataset-wishlist.pdf

Responsible Al for climate action

Mitigating biases in data and models
» E.g., Buildings data: Housing discrimination, geographic disparities in availability
» E.g., Weather models: Calibration may be optimized for particular regions
Improving trustworthiness and accountability

» Safety and robustness: Critical in, e.g., power systems and industrial operations
> Interpretability and auditability: Critical in, e.g., policymaking contexts

Centering equity and climate justice

» Centering diverse stakeholders: E.g., industrial ag vs. smallholder farmers
» Avoiding centralization: Democratized capacity and compute, digital divide
» Avoiding digital colonialism: E.g., smart meters, analysis of remote sensing data
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Importance of stakeholder engagement

Stakeholder types (e.g.)
» Researchers (tech & social sciences)
> Implementing entities and industries
> End users
> Policymakers
> Other affected parties

Meaningful engagement required

Citizen control

Delegated power

Partnership

Placation

Consultation

Informing

Therapy

Manipulation

Jl

Degrees
of
citizen power

Degrees
of
tokenism

Nonparticipation

Arnstein’s Ladder of Citizen Participation

Figure source: Arnstein, S. R. (1969). A ladder of citizen participation. Journal of the American Institute of Planners, 35(4), 216-224.
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Considerations for ML as a whole

If you work on ML, your work probably impacts climate change

Consider emissions impacts from applications and compute
(See tutorial section: “Is ML a help or hindrance for climate action?”)

Apply a climate justice lens: ML may concentrate resources and
widen the digital divide, affecting mitigation & adaptation capacity

Communicate responsibly about ML’s capabilities, limitations, and
alternatives: Risk of misunderstanding, diversion of funding/attention
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Takeaways: Considerations for
research & deployment

ML-for-climate: Consider the full S N, S
pathway to impact, including o | Z v o it e~ P
» Data, simulators, metrics -
» Stakeholder engagement —

» Responsible Al considerations

ML overall: Consider climate impacts L spplications
in mitigation
M H H adaptation
> Emissions impacts Enissons o = P
. . . impacts
> Climate justice & harduare WL spplictons
> Implications of communication emissions
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Tutorial outline

Introduction to climate change
Opportunities for ML in climate action

Research challenges
» Physics-informed and robust ML
» Interpretable ML and uncertainty quantification
» Generalization and causality

Is ML a help or hindrance for climate action?
Considerations for research and deployment

Takeaways and how to get involved

Ways to get
involved

Communities
and resources

Roadmap for
starting out



Ways to get involved

Include climate-relevant applications in the set of problems that motivate your
work, and collaborate with relevant domain experts

Especially for students: consider becoming a bridge between ML and another
field, such as energy, agriculture, or Earth sciences

Many job opportunities exist in this space, incl. mainstream CS research, focused
institutes, startups, major tech companies, public sector initiatives

Working explicitly on climate problems isn't the only way to help - consider how to
better align your existing projects w/ climate goals

Every application of ML affects the climate, often in multiple ways

Outside ML, may be able to advance broader actions by employer or society
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Climate Change Al

Catalyzing impactful work at the intersection of climate change & ML

Digital resources Conferences & events

Workshop series
» Submit or attend @ NeurlPS '22
» Mentorship programs
» www.climatechange.ai/papers

Summer school (multiple tracks)

Reports with opportunities for
researchers, practitioners, and
policymakers

New community-driven Wiki w/
datasets & additional resources

High Levera)

+  Forecasting supply and demand

+  Improving scheduling and flexible demand

Newsletter, blog, & community

Calls for Submissions

Funding

Projects & Courses

Welcome to the Climate Change Al community!

I Readings
Jobs

Webinars & happy hours

Webinar series (monthly)
Virtual happy hours (biweekly)

Climate Chnge Al une ZU

Speakers

Spatial planning of
low-carbon cities with - Dr. Jason Cao
machine learning e

Cities represent the lion’s share of the world’s energy
use and GHG emissions, requiring rapid mitigation

School of Public Affairs at

Funding programs

Global research funding
for impactful projects

\ BV . =
Climate Change Al Innovat'on Gra ntS

Announcing a $1.8M grants program for projects
at the intersection of Al and climate change

e Funding of up to § 150K for year-long research projects

e Supporting projects involving Al or machine learning that address
problems in climate change mitigation, adaptation, or climate science

e Focus on fostering pathways to impact and the creation of catalytic
datasets

Learn more & join in:
www.climatechange.ai

wOMm @ClimateChangeAl
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http://www.climatechange.ai
http://www.climatechange.ai/papers?

Other relevant resources

Selected communities & events

> Energy: ACM e-Energy, IEEE Power & Energy, PSCC, BuildSys, Al.EPRI

» Land use: GRSS-IEEE, Int'l Soc. of Precision Ag, Restor, Global Forest
Watch

» Climate & Earth science: Climate Informatics, AGU/EGU, Phi-Week

> Biodiversity: Al for Conservation slack, WILDLABS, GEO BON

» General: CompSustNet (community & doctoral consortium)

Publication venues: ICML/NeurlPS/CVPR/etc, upcoming special track of JMLR,
Environmental Data Science, ACM COMPASS, many domain-specific venues

More info in the Climate Change Al monthly newsletter
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https://www.climatechange.ai/newsletter

Datasets and challenges

Energy: CityLearn, OPFLearn, ARPA-E GO, PowerGridworld, L2RPN, BeoBench,
Building Data Genome, bbd.labworks.org, COBS, BOPTEST/ACTB, Open Catalyst

Land use: TorchGeo, blutjens/awesome-forests, CropHarvest, Radiant ML Hub,
LandCoverNet, Agriculture-Vision, chrieke/awesome-satellite-imagery-datasets

Climate & Earth science: mldata.pangeo.io, ClimateBench, ClimART, CauseMe
Adaptation: wandb/droughtwatch, Global Flood Database, FloodNet, ITU GEOAI
Biodiversity: iNat dataset, LifeCLEF, FGVC, iWildCam, Movebank

More info (or contribute) at wiki.climatechange.ai
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http://wiki.climatechange.ai

Datasets and challenges

Energy:[CityLearn, OPFLearn, ARPA-E GO, PowerGridworld,|L2RPN,|BeoBench,
Building Data Genome, bbd.labworks.org, COBS, BOPTEST/ACTB,|Open Catalyst

Land use: TorchGeo, Radiant MLHub, blutjens/awesome-forests, CropHarvest,
LandCoverNet, Agriculture-Vision, chrieke/awesome-satellite-imagery-datasets,

Climate & Earth science: mldata.pangeo.io, ClimateBench, ClimART, CauseMe

Adaptation: wandb/droughtwatch, Global Flood Database, FloodNet]ITU GEOAI

Biodiversity: iNat dataset, LifeCLEF, FGVC, iWildCam, Movebank

More info (or contribute) at wiki.climatechange.ai
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http://wiki.climatechange.ai

Datasets and challenges

Energy:[CityLearn, OPFLearn, ARPA-E GO, PowerGridworld, L2RPN, BeoBench,
Building Data Genome, bbd.labworks.org, COBS, BOPTEST/ACTB, Open Catalyst

6tyLearn Challenge 2022 \

RL algorithms to coordinate energy use of
several connected buildings on a micro-grid

Organized by researchers from UT Austin and
CU Boulder, sponsored by NREL & EPRI

NeurlPS 2022 challenge - closes Oct 31

\_ /




Datasets and challenges

Energy: CityLearn, OPFLearn, ARPA-E GO, PowerGridworld, L2RPN, BeoBench,
Building Data Genome, bbd.labworks.org, COBS, BOPTEST/ACTB,|Open Catalyst

Apen Catalyst Challenge 2022 \

ML methods (typically GNNs) to approximate
guantum chemistry simulations of candidate
catalysts for renewable energy storage

Organized by CMU Chem Eng. and Meta Al

Submissions open through Oct 7

\_ /




Datasets and challenges

Adaptation: wandb/droughtwatch, Global Flood Database, FloodNet]ITU GEOAI

ﬁl‘ U GeoAl Challenge \

Two relevant challenges: (1) Cropland
mapping with satellite imagery, (2)
location mention recognition from
social media crisis-related text

Organized by ITU Al for Good

Qegistration open through Sep 30 /
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Roadmap for working in this space

Identify key areas that you may want to work in

Check out datasets or challenges to get hands-on practice

Explore and learn more, including how non-ML techniques are being used
Find (additional) collaborators with complementary domain expertise
Work together to scope problems and data sources (may not be ML-ready)
Design algorithms to incorporate domain and deployment constraints

Work with deployment partners & affected stakeholders to guide impact
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