
Learning Objectives and Preferences:

How? Actively
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Most informative,
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Queries should be actively selected.

𝑢

𝑅!(𝑥, 𝑢)

𝑥

𝑏(𝜃)

𝑞

𝑎

queries

Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]



𝜉! 𝜉"

Challenge:
Queries lie in a continuous and high-dimensional space. 

𝒖!𝒖!

𝒖"#𝒖"$

𝑥%𝑥%

Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]



𝑢

𝑅!(𝑥, 𝑢)

𝑥

parametrization 
of the reward function

𝑏(𝜃)
belief over 

reward parameters

queries

Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]



𝑢

𝑅!(𝑥, 𝑢)

𝑥

parametrization 
of the reward function

𝑏(𝜃)
belief over 

reward parameters

queries

Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]

Real robots don’t get handed a neat query set



They have to synthesize their queries from scratch.
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Queries should be actively synthesized.



Subject to   𝜓 ∈ 𝔽
𝔽 = {𝜓:𝜓 = Φ 𝜉& −Φ 𝜉' , 𝜉&, 𝜉' ∈ Ξ}

Actively synthesizing queries

max
(

min{𝔼 1 − 𝑓((𝜃) , 𝔼 1 − 𝑓)((𝜃) }

minimum volume removed

𝑓& 𝜽 = min(1, exp(𝐼'𝜽(𝜓))Human update function
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Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]



No prior preference Learns heading preferences Learns collision 
avoidance preferences

Batch active preference based learning of reward functions
[Biyik, Sadigh, CoRL’18]
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𝑅 𝜉! > 𝑅(𝜉")
[Sadigh’17]
[Basu’18]
[Biyik’18,’19]
[Katz’19]
[Palan’19]
[Wilde’20]

𝑅 𝜉! = 𝜃 ⋅ 𝜙 𝜉!
Trajectory
Features

Designing features is hard.



𝑅 𝜉! > 𝑅(𝜉")

Trajectory Features: Shot Speed, Shot Angle

𝑅 𝜉! = 𝜃 ⋅ 𝜙 𝜉!𝑅 𝜉! = 𝑓 𝜙 𝜉!



1. What if our reward function is nonlinear?



𝑃 𝜉! | 𝜉!, 𝜉" = Φ
𝑅 𝜉! − 𝑅(𝜉")

2𝜎

Approximate as a GP Maximize Info Gain 𝜉!, 𝜉"

I prefer 𝜉& over 𝜉'

𝑃 𝑓 | ∝ 𝑃 𝑓 𝑃 | 𝑓

Active Preference-based Gaussian Process Regression 
for Reward Learning

[Biyik, Huynh, Kochenderfer, Sadigh. RSS’20]



Linear Reward

Learned Policies

GP Reward
Active Preference-based Gaussian Process Regression for Reward Learning

[Biyik, Huynh, Kochenderfer, Sadigh. RSS’20]



Nonlinear Rewards for Exoskeletons

ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton Gait Preference Landscapes
[Li, Tucker, Biyik, Novoseller, Burdick, Sui, Sadigh, Yue, Ames, ICRA’21]
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The red car will make an unprotected left turn…

A timid driver

…but realizes the blue car is coming.

Learning from 

An aggressive driver

Both types of drivers

Collides with
the blue car

44
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Queries should be actively synthesized.
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1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?



?Impossible
(Zhao et al., 2016)

Unimodal Multimodal

Learning from
Comparisons

≻

51
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Tucker et al., 2020
Wilde et al., 2021



Unimodal Multimodal

Learning from
Rankings This work

≻≻≻ …

Learning Multimodal Rewards from Rankings
[Myers, Bıyık, Anari, Sadigh, CoRL’21]
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𝜉$ 𝜉%𝜉& 𝜉'

Users have their own reward functions.

𝑅$ 𝜉 = 𝜃$%𝜙 𝜉 𝑅& 𝜉 = 𝜃&%𝜙 𝜉
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𝑅$ 𝜉 = 𝜃$%𝜙 𝜉
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There is only one option left.
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𝜉& ≻ 𝜉' ≻ 𝜉( ≻ 𝜉)

w.p. !!
!!"!"

w.p. !"
!!"!"

Starts with a prior 𝑃 𝛼, 𝜃$, 𝜃&
Posterior: 𝑃 𝛼, 𝜃$, 𝜃& 𝜉$ ≻ 𝜉( ≻ 𝜉) ≻ 𝜉& ∝ 𝑃 𝛼, 𝜃$, 𝜃& 𝑃 𝜉$ ≻ 𝜉( ≻ 𝜉) ≻ 𝜉& ∣ 𝛼, 𝜃$, 𝜃&

Probability of observing the ranking

𝑃 𝜉$ ≻ 𝜉( ≻ 𝜉) ≻ 𝜉& ∣ 𝛼, 𝜃$, 𝜃& =
𝑃 | 𝛼 𝑃 𝜉$ ≻ 𝜉( ≻ 𝜉) ≻ 𝜉& , 𝜃$ 𝑃 | 𝛼 𝑃 𝜉$ ≻ 𝜉( ≻ 𝜉) ≻ 𝜉& , 𝜃&+

Learning Multimodal Rewards from Rankings
[Myers, Bıyık, Anari, Sadigh, CoRL’21]



Please rank these 
trajectories

𝜉$ 𝜉%𝜉& 𝜉'

How does the robot choose which trajectories to show to the users?

We actively query the users by maximizing information gain.



Maximize Information Gain

Unimodal: max
*+,-.
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1

Bıyık et al. CoRL’19
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1 Multimodal!
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Active Method Better Learns

After 10 information-optimal queries:

After 10 random queries:
Middle Shelf

Random querying 
did not properly 

learn not dropping 
items yet

Learning Multimodal Rewards from Rankings
[Myers, Bıyık, Anari, Sadigh, CoRL’21]
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1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?
3. What if we have a neural reward function?





Learning human objectives by evaluating hypothetical behavior
[Reddy, Dragan, Levine, Legg, Leike, ICML’20]



max
-

EnsableDisagreement(R!(𝜉))

Subject to   𝑝. 𝜉 > 𝜏

Actively synthesizing queries

learned dynamics model

Learning human objectives by evaluating hypothetical behavior
[Reddy, Dragan, Levine, Legg, Leike, ICML’20]



VAE + RNN + Mixture Density Network

Learning human objectives by evaluating hypothetical behavior
[Reddy, Dragan, Levine, Legg, Leike, ICML’20]



Active Learning of Neural Rewards

Christiano et al. NeurIPS‘17 Lee et al. ICML‘21

• Generating trajectories takes too much time.
• Human data are expensive.
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Replay Buffer
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1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?
3. What if we have a neural reward function?


