Learning Objectives and Preferences:

How? Actively
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Where do queries come from?
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Queries should be actively selected.
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Challenge:
Queries lie in a continuous and high-dimensional space.

Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]
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Real robots don’t get handed a neat query set
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They have to synthesize their queries from scratch.
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Queries should be actively synthesized.




Actively synthesizing queries

minimum volume removed
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Active preference based learning of reward functions
[Sadigh, Seshia, Sastry, Dragan, RSS’17]



No prior preference Learns heading preferences Learns collision
avoidance preferences

Batch active preference based learning of reward functions
[Biyik, Sadigh, CoRL'18]



Queries should be actively synthesized.
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Trajectory Features: Shot Speed, Shot Angle
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1. What if our reward function is nonlinear?
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Active Preference-based Gaussian Process Regression
for Reward Learning

[Biyik, Huynh, Kochenderfer, Sadigh. RSS’20]




Learned Policies

Linear Reward GP Reward

Active Preference-based Gaussian Process Regression for Reward Learning
[ Biyik, Huynh, Kochenderfer, Sadigh. RSS20]



Nonlinear Rewards for Exoskeletons
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High Pélvis Pitch and Low Pelvis Roll

ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton Gait Preference Landscapes
[Li, Tucker, Biyik, Novoseller, Burdick, Sui, Sadigh, Yue, Ames, ICRA'21]



Queries should be actively synthesized.
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Queries should be actively synthesized.
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Queries should be actively synthesized.
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1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?



Unimodal

Multimodal

Learning from
Comparisons

Gervasio et al., 1999
Akrour et al., 2012
Sadigh et al., 2017

Christiano et al., 2017
Biyik et al., 2020
Tucker et al., 2020
Wilde et al., 2021
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Unimodal Multimodal

. Gervasio et al., 1999
Leamlﬂg from Akrour et al., 2012

Rankings Sadigh et al., 2017 ,
Christiano et al., 2017 This work

Biyik et al., 2020
Tucker et al., 2020
Wilde et al., 2021

Learning Multimodal Rewards from Rankings
[Myers, Buyik, Anari, Sadigh, CoRL'21]
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The user noisily chooses his best option: He chooses &,
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The user noisily chooses his second best option: He chooses &3
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The user noisily chooses his third best option: He chooses ¢,
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There is only one option left.
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Starts with a prior
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Learning Multimodal Rewards from Rankings
[Myers, Buyik, Anari, Sadigh, CoRL'21]



How does the robot choose which trajectories to show to the users?

We actively query the users by maximizing information gain.
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Biyik et al. CoRL'19
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Sampling from a Multimodal Distribution

X .




Sampling from a Multimodal Distribution
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Active Method Better Learns

Middle Shelf

After 10 random queries:

Random querying
did not properly
learn not dropping
items yet
After 10 information-optimal queries:

Learning Multimodal Rewards from Rankings
[Myers, Buyik, Anari, Sadigh, CoRL'21]




1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?



1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?
3. What if we have a neural reward function?
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Learning human objectives by evaluating hypothetical behavior
[Reddy, Dragan, Levine, Legg, Leike, ICML’20]

L4
TS
W 0 Y .
Nt e )
‘e Y 1
v N P

. L) A
A ) “ "¢ "l' “ ~~
\‘ Ve ,'I [}
‘/ A4 1

L\
N
"\\' ‘\“ ',
AR ARES A ’
’ N ¢
o % / AR 4



Actively synthesizing queries
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learned dynamics model

Learning human objectives by evaluating hypothetical behavior
[Reddy, Dragan, Levine, Legg, Leike, ICML'20]
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VAE + RNN + Mixture Density Network

Learning human objectives by evaluating hypothetical behavior
[Reddy, Dragan, Levine, Legg, Leike, ICML’20]




Active Learning of Neural Rewards

Christiano et al. NeurIPS'17 Lee et al. ICML21

* Generating trajectories takes too much time.
* Human data are expensive.
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Pre-training Online Adaptation
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1. What if our reward function is nonlinear?
2. What if our reward function is multimodal?
3. What if we have a neural reward function?



