Inferring Cause and Effect
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Question of the day

How can we
distinguish cause from effect
under realistic noise assumptions?
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Inferring Cause and Effect

Bi-variate causal
inference

?



Causal Model

We consider continuous valued
cause X, Gaussian noise N and effect Y

Homoscedastic Noise (ANM)
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[dentitiability

Linear functions, heteroscedastic noise

f px()log(Var(Y1X = x))dx
< [ pyWlog(Var(X|Y = y))dy

Non-linear, homoscedastic noise

Ellog(Var(Y|X))] < E[log(Var(X|Y))]

We can identify cause from effect

by comparing log-likelihood!
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The Algorithm: HEC

Partition domain of the presumed cause
into bins with constant noise variance

Determine number of bins using the
Bayesian Information Criterion (BIC)

Determine the optimal binning
using dynamic programming
= optimal model is found in O(b?%n)
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EXperiments

Linear
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EXperiments

Non-Linear
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Experiments

Tubingen Cause-Effect Pairs
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Experiments

HECI performs on par with SOTA when
noise is stationary and better on
heteroscedastic noise
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Conclusion

Causal model
Y=f(X)+s(X)*N

|dentifiable

= |inear with heteroscedastic noise
= non-linear with homoscedastic noise

Inference
= HEcCl for discovering optimal models

= accurately infers cause and effect in the
presence of heteroscedastic noise
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Implementation available at eda.mmci.uni-saarland.de/heci/
Correspondence to saschaxu@cispa.de and jv@cispa.de 15
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