Anticorrelated Noise Injection for Improved Generalization

Antonio Orvieto * 1 Hans Kersting * 2 Frank Proske 3 Francis Bach 2 Aurelien Lucchi 4

^{*}Equal contribution ¹Department of Computer Science, ETH Zürich, Switzerland ²INRIA - Ecole Normale Supérieure - PSL Research University, Paris, France ³Department of Mathematics, University of Oslo, Norway ⁴Department of Mathematics and Computer Science, University of Basel, Switzerland. Correspondence to: Antonio Orvieto <antonio.orvieto@inf.ethz.ch>, Hans Kersting hans.kersting@inria.fr.

Empirical Risk Minimization (ERM)

Let f(x) be the prediction of a neural net which approximates the map $x \mapsto y$ for $(x, y) \sim P$

Consider a dataset $\{(x_i, y_i)\}_{i=1}^n$ sampled from P, we **hope** that

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \ell_{w}(x_{i}, y_{i}).$$
 training loss

Is close to
$$L_{true}(w) = E_{(x,y)\sim P}[\ell_w(x,y)]$$
 generalization loss

In over-parametrized models, loss landscape changes drastically as the number of datapoints increases!

Proposed in this paper: Anti-PGD

Anti-PGD drives the approximation towards stable minima which provide improved generalization

How are we able to do that? Anti-correlated Noise Injection!

Standard perturbed gradient descent (SGLD) is

$$w_{k+1} = w_k - \eta \nabla L(w_k) + \sigma \cdot \xi_{k+1}.$$
 (PGD)

where ξ_k are standard Gaussian RVs.

We negatively correlate noise to prev. update

$$w_{k+1} = w_k - \eta \nabla L(w_k) + \sigma \cdot (\xi_{k+1} - \xi_k)$$
 (Anti-PGD)

Experimental evidence

Why does it work? (1)

Can be shown that adding anti-correlated noise corresponds to performing a noisy gradient step on a regularized loss

$$w_{k+1} = w_k - \eta \, \nabla L(w_k) + \sigma \cdot (\xi_{k+1} - \xi_k)$$
 (Anti-PGD)
$$\simeq w_k - \eta \, \nabla \tilde{L}(w_k) + \zeta_k, \qquad \zeta_k = \text{noise} + \text{h.o.t.}$$

Where \tilde{L} is a regularized loss – penalises sharp minima!!

$$\tilde{L}(w) = L(w) + \frac{\sigma}{2} Tr(\nabla^2 L(w))$$

FLAT MINIMA

NEURAL COMPUTATION 9(1):1-42 (1997)

Sepp Hochreiter
Fakultät für Informatik
Technische Universität München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber IDSIA Corso Elvezia 36 6900 Lugano, Switzerland juergen@idsia.ch http://www.idsia.ch/~juergen

March 1996

ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP AND SHARP MINIMA

Nitish Shirish Keskar* Northwestern University

Evanston, IL 60208 keskar.nitish@u.northwestern.edu

Jorge Nocedal Northwestern University Evanston, IL 60208 j-nocedal@northwestern.edu Mikhail Smelyanskiy Intel Corporation Santa Clara, CA 95054 mikhail.smelyanskiy@intel.com

dheevatsa.mudigere@intel.com

Intel Corporation

Bangalore, India

Ping Tak Peter Tang Intel Corporation Santa Clara, CA 95054 peter.tang@intel.com

Exploring Generalization in Deep Learning

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro Toyota Technological Institute at Chicago {bneyshabur, srinadh, mcallester, nati}@ttic.edu

Why does it work? (2)

We perform exact computations for a "widening valley" loss

See Theorem 3.1 in our paper!

- Anti-PGD converges to 0 (wide), while PGD diverges to sharp minima.
- Hyperparameter tuning does not help PGD.

$$L(u,v) = \frac{1}{2}v^2||u||^2$$
 $v \in \mathbb{R}$, and $u \in \mathbb{R}^d$

Also check out our follow-up preprint!

Explicit Regularization in Overparametrized Models via Noise Injection

Antonio Orvieto*

Department of Computer Science
ETH Zürich, Zürich, CH.
antonio.orvieto@inf.ethz.ch

Anant Raj*
Coordinated Science Laboraotry
University of Illinois Urbana-Champaign.
Inria, Ecole Normale Supérieure
PSL Research University, Paris, France.
anant.raj@inria.fr

Hans Kersting*
Inria, Ecole Normale Supérieure
PSL Research University, Paris, France.
hans.kersting@inria.fr

Francis Bach
Inria, Ecole Normale Supérieure
PSL Research University, Paris, France.
francis.bach@inria.fr

June 13, 2022

Thank you!