


Empirical Risk Minimization (ERM)
Let  be the prediction of a neural net which approximates 

the map  for 

f(x)
x ↦ y (x, y) ∼ P

x f(x) ≈ y

Consider a dataset  sampled from , we hope that {(xi, yi)}n
i=1 P

.L(w) =
1
n

n

∑
i=1

ℓw(xi, yi)

Ltrue(w) = E(x,y)∼P[ℓw(x, y)]Is close to

training 
loss

generalization 
loss



In over-parametrized models, loss landscape changes  
drastically as the number of datapoints increases!

 Generalization loss≈



Proposed in this paper: Anti-PGD

Anti-PGD drives the approximation towards stable minima 
which provide improved generalization



How are we able to do that?  
Anti-correlated Noise Injection!

.      (PGD)wk+1 = wk − η∇L(wk) + σ ⋅ ξk+1

     (Anti-PGD)wk+1 = wk − η∇L(wk) + σ ⋅ (ξk+1 − ξk)

Standard perturbed gradient descent (SGLD) is

where  are standard Gaussian RVs. ξk

We negatively correlate noise to prev. update ∑
k

ξk

∑
k

(ξk − ξk−1)



Experimental evidence



Why does it work? (1)
Can be shown that adding anti-correlated noise corresponds

to performing a noisy gradient step on a regularized loss

     (Anti-PGD)wk+1 = wk − η∇L(wk) + σ ⋅ (ξk+1 − ξk)

,          ≃ wk − η∇L̃(wk) + ζk ζk = noise + h.o.t.

   L̃(w) = L(w) +
σ
2

Tr(∇2L(w))

Where  is a regularized loss – penalises sharp minima!!L̃



Why does it work? (2)

We perform exact computations for a “widening valley” loss

See Theorem 3.1 in our paper! 

- Anti-PGD converges to 0 (wide), 
while PGD diverges to sharp 
minima.


- Hyperparameter tuning does not 
help PGD.



Also check out our follow-up preprint!

Thank you!  


