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Population Learning: the hammer and the nail.

If population learning is the solution, what is the problem? /

Convergence to an Nash Equilibrium (NE) of the game:

e  Cannot incorporate subjective Bayesian opponent priors at
test-time.

E ° Robust to adversarial exploit: no opponent can profitably deviate E 0 0 0

| from their strategy. .

i ° Minimax optimal: optimal when the opponent plays minimax i 1 0 0

E optimally. E p 1—p 0

i Population learning with convergence to NE can be restrictive: i l1-p
' e  Arbitrarily suboptimal: if the opponent does NOT play minimax |

| optimally. i

i e  Cannot BR to all but a few mixed-strategies from the population: ! P

: o  E.g. the (0.0 0.5, 0.5) mixture policy can be executed at |

! test time, but its best-response requires further training. i PSRO-NASH
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Beyond NE: generalising over the Population Simplex

Any-mixture Bayes-optimality:

° Convergence to an Nash Equilibrium (NE):
procedure terminates when we fails to
expand the simplex.

° Bayes-optimality under any opponent
prior. Learned policies trades off
exploration and exploitation optimally to
maximize returns.
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But ... we need an efficient BR operator that can
generalise across the entire expanding simplex.
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Result 1: Any-mixture Bayes-optimal return
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Result 2: Posterior Inference via Bayesian MTRL

Implicit posterior readout
(with stop-grad)
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Result 3: Improved Population Learning
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e NeuPL: transfer learning over vertices of the
population simplex.

e Simplex-NeuPL: transfer learning across the
entire simplex!
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Conclusion & Future Works

Game-Theoretic: preserves convergence guarantees to NE (extending NeuPL);

Bayes-optimal adaptive behaviors: infer and exploit opponents optimally under opponent prior.
Transfer of skills across population simplex;

Efficient & Scalable: represents a population of strategies, as well as Bayes-optimal responses to all
their mixtures, within a single conditional network.

e  Future Works:
o  Beyond symmetric zero-sum games.

e Come visit us at Session 3 Track 8 for more discussions & results!
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