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The Problem: A Large Matrix

• 𝑘(𝑥, 𝑦) – covariance function of two inputs 𝑥 and 𝑦
• Covariance function of gradients is given by 𝐺[𝑘], where

• 𝐺 𝑘 – is 𝑑 by 𝑑
• We show how to compute MVMs with 𝐺[𝑘] in 𝑂(𝑑).

𝐺!" = 𝜕#!𝜕$"
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The Problem: A Large Matrix

• If we have an 𝑂 𝑑 MVM with 𝐺[𝑘], we have an MVM with 𝐾∇ in 𝑂 𝑛!𝑑 .

• 𝐾∇ – covariance matrix between gradients of all points (𝑛𝑑 by 𝑛𝑑)
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The Solution: Structure-Aware AD

Many kernel can be written as

For these choices, we have
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(2018) used BO in model space to choose surrogate models
for use in a primary BO loop. Wu and Frazier (2019) pre-
sented a two-step lookahead method for BO. Eriksson et al.
(2019) put forth TuRBO, leveraging a set of local models
for the global optimization of high-dimensional functions.
BO is also applied to hierarchical reinforcement learning
(Brochu et al., 2010; Prabuchandran et al., 2021). Existing
BO libraries include Dragonfly (Kandasamy et al., 2020),
BayesOpt (Martinez-Cantin, 2014), and BoTorch (Balandat
et al., 2020). For a review of BO, see (Frazier, 2018).

3. Methods
3.1. Preliminaries

We first provide definitions and set up notation and central
quantities for the rest of the paper.
Definition 3.1. A random function f is a Gaussian process
with a mean µ and covariance function k if and only if all of
its finite-dimensional marginal distributions are multivariate
Gaussian distributions. In particular, f is a Gaussian process
if and only if for any finite set of inputs {xi},

f ⇠ N (µ,K) ,

where fi = f(xi), µi = µ(xi) and Kij = k(xi,xj). In
this case, we write f ⇠ GP(µ, k).

When defining kernel functions, x and y will denote the
first and second inputs, r = x � y their difference, Id the
d-dimensional identity matrix, and 1d the all-ones vector of
length d. The gradient and Jacobian operators with respect
to x will be denoted by rx and Jx, respectively.

The G Operator The focus of the present work is the
matrix-valued operator G = rxr

>
y that acts on kernel

functions k(x,y) and whose entries are Gij = @xi@yj .
We will show that G[k] is highly structured and data-
sparse for a vast space of kernel functions and present
an automatic structure-aware algorithm for the computa-
tion of G. The kernel matrix K

r = G[k](X) that arises
from the evaluation of G[k] on the data X = [x1 . . .xn]
can be seen as a block matrix whose (i, j)th block is
K

r
ij = G[k](xi,xj). For isotropic and dot-product ker-

nels, De Roos et al. (2021) discovered that Kr has the
structure K

r = k0(X) ⌦ Id + [rank-n2 matrix], which
allows a linear-in-d direct inversion, though the resulting
O(n6)-scaling only applies to the low-data regime. Rather
than deriving similar global structure, we focus on efficient
structure for the blocks G[k](xi,xj), which is more readily
amenable to a fully lazy implementation with O(1) memory
complexity, and the synthesis of several derivative orders,
see Sec. D for details. Last, we stress that our goal here is
to focus on the subset of transformations that arise in most
kernel functions, and not the derivation of a fully general
structured AD engine for the computation of the G operator.

3.2. Gradient Kernel Structure

In this section, we derive novel structured representations
of G[k] for a large class of kernels k. The only similar pre-
viously known structures are for isotropic and dot-product
kernels derived by De Roos et al. (2021).

Input Types The majority of canonical covariance kernels
can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r · r), (c · r), or (x ·y), f is a scalar-
valued function, and c 2 Rd. The first two types make up
most of commonly used stationary covariance functions,
while the last constitutes the basis of many popular non-
stationary kernels. We call the choice of proto isotropic,
stationary linear functional, and dot product, respectively.
First, we note that G[proto] is simple for all three choices:

G[r · r] = �Id, G[c · r] = 0d⇥d, and G[x · y] = Id.

Kernels with the first and third input type are ubiquitous
and include the exponentiated quadratic, rational quadratic,
Matérn, and polynomial kernels. An important example of
the second type is the cosine kernel, which has been used to
approximate stationary kernels (Rahimi et al., 2007; Lázaro-
Gredilla et al., 2010; Gal and Turner, 2015) and is also a part
of the spectral mixture kernel (Wilson and Adams, 2013).
In the following, we systematically treat most of the kernels
and transformations in (Rasmussen and Williams, 2005)
to greatly expand the class of kernels for which structured
representations are available.

A Chain Rule Many kernels can be expressed as k = f�g
where g is scalar-valued. For these types of kernels, we have

G[f � g] = (f 0
� g) G[g] + (f 00

� g) rx[g]ry[g]
>.

That is, G[f � g] is a rank-one correction to G[g]. If G[g]
is structured with O(d) data, G[f � g] inherits this property.
As an immediate consequence, G[k] permits a matrix-vector
multiply in O(d) time for all isotropic, stationary, and dot-
product kernels that fall under the categories outlined above.
However, there are combinations and transformations of
these base kernels that give rise to more complex kernels
and enable more flexible, problem-dependent modeling.

Sums and Products First, covariance kernels are closed
under addition and multiplication. If all summands or co-
efficients are of the the same input-type, the sum kernel
has the same input type since (f � proto) + (g � proto) =
(f + g) � proto and similarly for products, so that no spe-
cial treatment is necessary beside the chain rule above. An
interesting case occurs when we combine kernels of differ-
ent input types or more complex composite kernels. For

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

(2018) used BO in model space to choose surrogate models
for use in a primary BO loop. Wu and Frazier (2019) pre-
sented a two-step lookahead method for BO. Eriksson et al.
(2019) put forth TuRBO, leveraging a set of local models
for the global optimization of high-dimensional functions.
BO is also applied to hierarchical reinforcement learning
(Brochu et al., 2010; Prabuchandran et al., 2021). Existing
BO libraries include Dragonfly (Kandasamy et al., 2020),
BayesOpt (Martinez-Cantin, 2014), and BoTorch (Balandat
et al., 2020). For a review of BO, see (Frazier, 2018).

3. Methods
3.1. Preliminaries

We first provide definitions and set up notation and central
quantities for the rest of the paper.
Definition 3.1. A random function f is a Gaussian process
with a mean µ and covariance function k if and only if all of
its finite-dimensional marginal distributions are multivariate
Gaussian distributions. In particular, f is a Gaussian process
if and only if for any finite set of inputs {xi},

f ⇠ N (µ,K) ,

where fi = f(xi), µi = µ(xi) and Kij = k(xi,xj). In
this case, we write f ⇠ GP(µ, k).

When defining kernel functions, x and y will denote the
first and second inputs, r = x � y their difference, Id the
d-dimensional identity matrix, and 1d the all-ones vector of
length d. The gradient and Jacobian operators with respect
to x will be denoted by rx and Jx, respectively.

The G Operator The focus of the present work is the
matrix-valued operator G = rxr

>
y that acts on kernel

functions k(x,y) and whose entries are Gij = @xi@yj .
We will show that G[k] is highly structured and data-
sparse for a vast space of kernel functions and present
an automatic structure-aware algorithm for the computa-
tion of G. The kernel matrix K

r = G[k](X) that arises
from the evaluation of G[k] on the data X = [x1 . . .xn]
can be seen as a block matrix whose (i, j)th block is
K

r
ij = G[k](xi,xj). For isotropic and dot-product ker-

nels, De Roos et al. (2021) discovered that Kr has the
structure K

r = k0(X) ⌦ Id + [rank-n2 matrix], which
allows a linear-in-d direct inversion, though the resulting
O(n6)-scaling only applies to the low-data regime. Rather
than deriving similar global structure, we focus on efficient
structure for the blocks G[k](xi,xj), which is more readily
amenable to a fully lazy implementation with O(1) memory
complexity, and the synthesis of several derivative orders,
see Sec. D for details. Last, we stress that our goal here is
to focus on the subset of transformations that arise in most
kernel functions, and not the derivation of a fully general
structured AD engine for the computation of the G operator.

3.2. Gradient Kernel Structure

In this section, we derive novel structured representations
of G[k] for a large class of kernels k. The only similar pre-
viously known structures are for isotropic and dot-product
kernels derived by De Roos et al. (2021).

Input Types The majority of canonical covariance kernels
can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r · r), (c · r), or (x ·y), f is a scalar-
valued function, and c 2 Rd. The first two types make up
most of commonly used stationary covariance functions,
while the last constitutes the basis of many popular non-
stationary kernels. We call the choice of proto isotropic,
stationary linear functional, and dot product, respectively.
First, we note that G[proto] is simple for all three choices:

G[r · r] = �Id, G[c · r] = 0d⇥d, and G[x · y] = Id.

Kernels with the first and third input type are ubiquitous
and include the exponentiated quadratic, rational quadratic,
Matérn, and polynomial kernels. An important example of
the second type is the cosine kernel, which has been used to
approximate stationary kernels (Rahimi et al., 2007; Lázaro-
Gredilla et al., 2010; Gal and Turner, 2015) and is also a part
of the spectral mixture kernel (Wilson and Adams, 2013).
In the following, we systematically treat most of the kernels
and transformations in (Rasmussen and Williams, 2005)
to greatly expand the class of kernels for which structured
representations are available.

A Chain Rule Many kernels can be expressed as k = f�g
where g is scalar-valued. For these types of kernels, we have

G[f � g] = (f 0
� g) G[g] + (f 00

� g) rx[g]ry[g]
>.

That is, G[f � g] is a rank-one correction to G[g]. If G[g]
is structured with O(d) data, G[f � g] inherits this property.
As an immediate consequence, G[k] permits a matrix-vector
multiply in O(d) time for all isotropic, stationary, and dot-
product kernels that fall under the categories outlined above.
However, there are combinations and transformations of
these base kernels that give rise to more complex kernels
and enable more flexible, problem-dependent modeling.

Sums and Products First, covariance kernels are closed
under addition and multiplication. If all summands or co-
efficients are of the the same input-type, the sum kernel
has the same input type since (f � proto) + (g � proto) =
(f + g) � proto and similarly for products, so that no spe-
cial treatment is necessary beside the chain rule above. An
interesting case occurs when we combine kernels of differ-
ent input types or more complex composite kernels. For

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



The Solution: Structure-Aware AD

Many kernel can be written as

For these choices, we have

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

(2018) used BO in model space to choose surrogate models
for use in a primary BO loop. Wu and Frazier (2019) pre-
sented a two-step lookahead method for BO. Eriksson et al.
(2019) put forth TuRBO, leveraging a set of local models
for the global optimization of high-dimensional functions.
BO is also applied to hierarchical reinforcement learning
(Brochu et al., 2010; Prabuchandran et al., 2021). Existing
BO libraries include Dragonfly (Kandasamy et al., 2020),
BayesOpt (Martinez-Cantin, 2014), and BoTorch (Balandat
et al., 2020). For a review of BO, see (Frazier, 2018).

3. Methods
3.1. Preliminaries

We first provide definitions and set up notation and central
quantities for the rest of the paper.
Definition 3.1. A random function f is a Gaussian process
with a mean µ and covariance function k if and only if all of
its finite-dimensional marginal distributions are multivariate
Gaussian distributions. In particular, f is a Gaussian process
if and only if for any finite set of inputs {xi},

f ⇠ N (µ,K) ,

where fi = f(xi), µi = µ(xi) and Kij = k(xi,xj). In
this case, we write f ⇠ GP(µ, k).

When defining kernel functions, x and y will denote the
first and second inputs, r = x � y their difference, Id the
d-dimensional identity matrix, and 1d the all-ones vector of
length d. The gradient and Jacobian operators with respect
to x will be denoted by rx and Jx, respectively.

The G Operator The focus of the present work is the
matrix-valued operator G = rxr

>
y that acts on kernel

functions k(x,y) and whose entries are Gij = @xi@yj .
We will show that G[k] is highly structured and data-
sparse for a vast space of kernel functions and present
an automatic structure-aware algorithm for the computa-
tion of G. The kernel matrix K

r = G[k](X) that arises
from the evaluation of G[k] on the data X = [x1 . . .xn]
can be seen as a block matrix whose (i, j)th block is
K

r
ij = G[k](xi,xj). For isotropic and dot-product ker-

nels, De Roos et al. (2021) discovered that Kr has the
structure K

r = k0(X) ⌦ Id + [rank-n2 matrix], which
allows a linear-in-d direct inversion, though the resulting
O(n6)-scaling only applies to the low-data regime. Rather
than deriving similar global structure, we focus on efficient
structure for the blocks G[k](xi,xj), which is more readily
amenable to a fully lazy implementation with O(1) memory
complexity, and the synthesis of several derivative orders,
see Sec. D for details. Last, we stress that our goal here is
to focus on the subset of transformations that arise in most
kernel functions, and not the derivation of a fully general
structured AD engine for the computation of the G operator.

3.2. Gradient Kernel Structure

In this section, we derive novel structured representations
of G[k] for a large class of kernels k. The only similar pre-
viously known structures are for isotropic and dot-product
kernels derived by De Roos et al. (2021).

Input Types The majority of canonical covariance kernels
can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r · r), (c · r), or (x ·y), f is a scalar-
valued function, and c 2 Rd. The first two types make up
most of commonly used stationary covariance functions,
while the last constitutes the basis of many popular non-
stationary kernels. We call the choice of proto isotropic,
stationary linear functional, and dot product, respectively.
First, we note that G[proto] is simple for all three choices:

G[r · r] = �Id, G[c · r] = 0d⇥d, and G[x · y] = Id.

Kernels with the first and third input type are ubiquitous
and include the exponentiated quadratic, rational quadratic,
Matérn, and polynomial kernels. An important example of
the second type is the cosine kernel, which has been used to
approximate stationary kernels (Rahimi et al., 2007; Lázaro-
Gredilla et al., 2010; Gal and Turner, 2015) and is also a part
of the spectral mixture kernel (Wilson and Adams, 2013).
In the following, we systematically treat most of the kernels
and transformations in (Rasmussen and Williams, 2005)
to greatly expand the class of kernels for which structured
representations are available.

A Chain Rule Many kernels can be expressed as k = f�g
where g is scalar-valued. For these types of kernels, we have

G[f � g] = (f 0
� g) G[g] + (f 00

� g) rx[g]ry[g]
>.

That is, G[f � g] is a rank-one correction to G[g]. If G[g]
is structured with O(d) data, G[f � g] inherits this property.
As an immediate consequence, G[k] permits a matrix-vector
multiply in O(d) time for all isotropic, stationary, and dot-
product kernels that fall under the categories outlined above.
However, there are combinations and transformations of
these base kernels that give rise to more complex kernels
and enable more flexible, problem-dependent modeling.

Sums and Products First, covariance kernels are closed
under addition and multiplication. If all summands or co-
efficients are of the the same input-type, the sum kernel
has the same input type since (f � proto) + (g � proto) =
(f + g) � proto and similarly for products, so that no spe-
cial treatment is necessary beside the chain rule above. An
interesting case occurs when we combine kernels of differ-
ent input types or more complex composite kernels. For

𝑂 𝑑 MVM with 𝐺

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

(2018) used BO in model space to choose surrogate models
for use in a primary BO loop. Wu and Frazier (2019) pre-
sented a two-step lookahead method for BO. Eriksson et al.
(2019) put forth TuRBO, leveraging a set of local models
for the global optimization of high-dimensional functions.
BO is also applied to hierarchical reinforcement learning
(Brochu et al., 2010; Prabuchandran et al., 2021). Existing
BO libraries include Dragonfly (Kandasamy et al., 2020),
BayesOpt (Martinez-Cantin, 2014), and BoTorch (Balandat
et al., 2020). For a review of BO, see (Frazier, 2018).

3. Methods
3.1. Preliminaries

We first provide definitions and set up notation and central
quantities for the rest of the paper.
Definition 3.1. A random function f is a Gaussian process
with a mean µ and covariance function k if and only if all of
its finite-dimensional marginal distributions are multivariate
Gaussian distributions. In particular, f is a Gaussian process
if and only if for any finite set of inputs {xi},

f ⇠ N (µ,K) ,

where fi = f(xi), µi = µ(xi) and Kij = k(xi,xj). In
this case, we write f ⇠ GP(µ, k).

When defining kernel functions, x and y will denote the
first and second inputs, r = x � y their difference, Id the
d-dimensional identity matrix, and 1d the all-ones vector of
length d. The gradient and Jacobian operators with respect
to x will be denoted by rx and Jx, respectively.

The G Operator The focus of the present work is the
matrix-valued operator G = rxr

>
y that acts on kernel

functions k(x,y) and whose entries are Gij = @xi@yj .
We will show that G[k] is highly structured and data-
sparse for a vast space of kernel functions and present
an automatic structure-aware algorithm for the computa-
tion of G. The kernel matrix K

r = G[k](X) that arises
from the evaluation of G[k] on the data X = [x1 . . .xn]
can be seen as a block matrix whose (i, j)th block is
K

r
ij = G[k](xi,xj). For isotropic and dot-product ker-

nels, De Roos et al. (2021) discovered that Kr has the
structure K

r = k0(X) ⌦ Id + [rank-n2 matrix], which
allows a linear-in-d direct inversion, though the resulting
O(n6)-scaling only applies to the low-data regime. Rather
than deriving similar global structure, we focus on efficient
structure for the blocks G[k](xi,xj), which is more readily
amenable to a fully lazy implementation with O(1) memory
complexity, and the synthesis of several derivative orders,
see Sec. D for details. Last, we stress that our goal here is
to focus on the subset of transformations that arise in most
kernel functions, and not the derivation of a fully general
structured AD engine for the computation of the G operator.

3.2. Gradient Kernel Structure

In this section, we derive novel structured representations
of G[k] for a large class of kernels k. The only similar pre-
viously known structures are for isotropic and dot-product
kernels derived by De Roos et al. (2021).

Input Types The majority of canonical covariance kernels
can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r · r), (c · r), or (x ·y), f is a scalar-
valued function, and c 2 Rd. The first two types make up
most of commonly used stationary covariance functions,
while the last constitutes the basis of many popular non-
stationary kernels. We call the choice of proto isotropic,
stationary linear functional, and dot product, respectively.
First, we note that G[proto] is simple for all three choices:

G[r · r] = �Id, G[c · r] = 0d⇥d, and G[x · y] = Id.

Kernels with the first and third input type are ubiquitous
and include the exponentiated quadratic, rational quadratic,
Matérn, and polynomial kernels. An important example of
the second type is the cosine kernel, which has been used to
approximate stationary kernels (Rahimi et al., 2007; Lázaro-
Gredilla et al., 2010; Gal and Turner, 2015) and is also a part
of the spectral mixture kernel (Wilson and Adams, 2013).
In the following, we systematically treat most of the kernels
and transformations in (Rasmussen and Williams, 2005)
to greatly expand the class of kernels for which structured
representations are available.

A Chain Rule Many kernels can be expressed as k = f�g
where g is scalar-valued. For these types of kernels, we have

G[f � g] = (f 0
� g) G[g] + (f 00

� g) rx[g]ry[g]
>.

That is, G[f � g] is a rank-one correction to G[g]. If G[g]
is structured with O(d) data, G[f � g] inherits this property.
As an immediate consequence, G[k] permits a matrix-vector
multiply in O(d) time for all isotropic, stationary, and dot-
product kernels that fall under the categories outlined above.
However, there are combinations and transformations of
these base kernels that give rise to more complex kernels
and enable more flexible, problem-dependent modeling.

Sums and Products First, covariance kernels are closed
under addition and multiplication. If all summands or co-
efficients are of the the same input-type, the sum kernel
has the same input type since (f � proto) + (g � proto) =
(f + g) � proto and similarly for products, so that no spe-
cial treatment is necessary beside the chain rule above. An
interesting case occurs when we combine kernels of differ-
ent input types or more complex composite kernels. For

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



The Solution: Structure-Aware AD

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

(2018) used BO in model space to choose surrogate models
for use in a primary BO loop. Wu and Frazier (2019) pre-
sented a two-step lookahead method for BO. Eriksson et al.
(2019) put forth TuRBO, leveraging a set of local models
for the global optimization of high-dimensional functions.
BO is also applied to hierarchical reinforcement learning
(Brochu et al., 2010; Prabuchandran et al., 2021). Existing
BO libraries include Dragonfly (Kandasamy et al., 2020),
BayesOpt (Martinez-Cantin, 2014), and BoTorch (Balandat
et al., 2020). For a review of BO, see (Frazier, 2018).

3. Methods
3.1. Preliminaries

We first provide definitions and set up notation and central
quantities for the rest of the paper.
Definition 3.1. A random function f is a Gaussian process
with a mean µ and covariance function k if and only if all of
its finite-dimensional marginal distributions are multivariate
Gaussian distributions. In particular, f is a Gaussian process
if and only if for any finite set of inputs {xi},

f ⇠ N (µ,K) ,

where fi = f(xi), µi = µ(xi) and Kij = k(xi,xj). In
this case, we write f ⇠ GP(µ, k).

When defining kernel functions, x and y will denote the
first and second inputs, r = x � y their difference, Id the
d-dimensional identity matrix, and 1d the all-ones vector of
length d. The gradient and Jacobian operators with respect
to x will be denoted by rx and Jx, respectively.

The G Operator The focus of the present work is the
matrix-valued operator G = rxr

>
y that acts on kernel

functions k(x,y) and whose entries are Gij = @xi@yj .
We will show that G[k] is highly structured and data-
sparse for a vast space of kernel functions and present
an automatic structure-aware algorithm for the computa-
tion of G. The kernel matrix K

r = G[k](X) that arises
from the evaluation of G[k] on the data X = [x1 . . .xn]
can be seen as a block matrix whose (i, j)th block is
K

r
ij = G[k](xi,xj). For isotropic and dot-product ker-

nels, De Roos et al. (2021) discovered that Kr has the
structure K

r = k0(X) ⌦ Id + [rank-n2 matrix], which
allows a linear-in-d direct inversion, though the resulting
O(n6)-scaling only applies to the low-data regime. Rather
than deriving similar global structure, we focus on efficient
structure for the blocks G[k](xi,xj), which is more readily
amenable to a fully lazy implementation with O(1) memory
complexity, and the synthesis of several derivative orders,
see Sec. D for details. Last, we stress that our goal here is
to focus on the subset of transformations that arise in most
kernel functions, and not the derivation of a fully general
structured AD engine for the computation of the G operator.

3.2. Gradient Kernel Structure

In this section, we derive novel structured representations
of G[k] for a large class of kernels k. The only similar pre-
viously known structures are for isotropic and dot-product
kernels derived by De Roos et al. (2021).

Input Types The majority of canonical covariance kernels
can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r · r), (c · r), or (x ·y), f is a scalar-
valued function, and c 2 Rd. The first two types make up
most of commonly used stationary covariance functions,
while the last constitutes the basis of many popular non-
stationary kernels. We call the choice of proto isotropic,
stationary linear functional, and dot product, respectively.
First, we note that G[proto] is simple for all three choices:

G[r · r] = �Id, G[c · r] = 0d⇥d, and G[x · y] = Id.

Kernels with the first and third input type are ubiquitous
and include the exponentiated quadratic, rational quadratic,
Matérn, and polynomial kernels. An important example of
the second type is the cosine kernel, which has been used to
approximate stationary kernels (Rahimi et al., 2007; Lázaro-
Gredilla et al., 2010; Gal and Turner, 2015) and is also a part
of the spectral mixture kernel (Wilson and Adams, 2013).
In the following, we systematically treat most of the kernels
and transformations in (Rasmussen and Williams, 2005)
to greatly expand the class of kernels for which structured
representations are available.

A Chain Rule Many kernels can be expressed as k = f�g
where g is scalar-valued. For these types of kernels, we have

G[f � g] = (f 0
� g) G[g] + (f 00

� g) rx[g]ry[g]
>.

That is, G[f � g] is a rank-one correction to G[g]. If G[g]
is structured with O(d) data, G[f � g] inherits this property.
As an immediate consequence, G[k] permits a matrix-vector
multiply in O(d) time for all isotropic, stationary, and dot-
product kernels that fall under the categories outlined above.
However, there are combinations and transformations of
these base kernels that give rise to more complex kernels
and enable more flexible, problem-dependent modeling.

Sums and Products First, covariance kernels are closed
under addition and multiplication. If all summands or co-
efficients are of the the same input-type, the sum kernel
has the same input type since (f � proto) + (g � proto) =
(f + g) � proto and similarly for products, so that no spe-
cial treatment is necessary beside the chain rule above. An
interesting case occurs when we combine kernels of differ-
ent input types or more complex composite kernels. For
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(2018) used BO in model space to choose surrogate models
for use in a primary BO loop. Wu and Frazier (2019) pre-
sented a two-step lookahead method for BO. Eriksson et al.
(2019) put forth TuRBO, leveraging a set of local models
for the global optimization of high-dimensional functions.
BO is also applied to hierarchical reinforcement learning
(Brochu et al., 2010; Prabuchandran et al., 2021). Existing
BO libraries include Dragonfly (Kandasamy et al., 2020),
BayesOpt (Martinez-Cantin, 2014), and BoTorch (Balandat
et al., 2020). For a review of BO, see (Frazier, 2018).

3. Methods
3.1. Preliminaries

We first provide definitions and set up notation and central
quantities for the rest of the paper.
Definition 3.1. A random function f is a Gaussian process
with a mean µ and covariance function k if and only if all of
its finite-dimensional marginal distributions are multivariate
Gaussian distributions. In particular, f is a Gaussian process
if and only if for any finite set of inputs {xi},

f ⇠ N (µ,K) ,

where fi = f(xi), µi = µ(xi) and Kij = k(xi,xj). In
this case, we write f ⇠ GP(µ, k).

When defining kernel functions, x and y will denote the
first and second inputs, r = x � y their difference, Id the
d-dimensional identity matrix, and 1d the all-ones vector of
length d. The gradient and Jacobian operators with respect
to x will be denoted by rx and Jx, respectively.

The G Operator The focus of the present work is the
matrix-valued operator G = rxr

>
y that acts on kernel

functions k(x,y) and whose entries are Gij = @xi@yj .
We will show that G[k] is highly structured and data-
sparse for a vast space of kernel functions and present
an automatic structure-aware algorithm for the computa-
tion of G. The kernel matrix K

r = G[k](X) that arises
from the evaluation of G[k] on the data X = [x1 . . .xn]
can be seen as a block matrix whose (i, j)th block is
K

r
ij = G[k](xi,xj). For isotropic and dot-product ker-

nels, De Roos et al. (2021) discovered that Kr has the
structure K

r = k0(X) ⌦ Id + [rank-n2 matrix], which
allows a linear-in-d direct inversion, though the resulting
O(n6)-scaling only applies to the low-data regime. Rather
than deriving similar global structure, we focus on efficient
structure for the blocks G[k](xi,xj), which is more readily
amenable to a fully lazy implementation with O(1) memory
complexity, and the synthesis of several derivative orders,
see Sec. D for details. Last, we stress that our goal here is
to focus on the subset of transformations that arise in most
kernel functions, and not the derivation of a fully general
structured AD engine for the computation of the G operator.

3.2. Gradient Kernel Structure

In this section, we derive novel structured representations
of G[k] for a large class of kernels k. The only similar pre-
viously known structures are for isotropic and dot-product
kernels derived by De Roos et al. (2021).

Input Types The majority of canonical covariance kernels
can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r · r), (c · r), or (x ·y), f is a scalar-
valued function, and c 2 Rd. The first two types make up
most of commonly used stationary covariance functions,
while the last constitutes the basis of many popular non-
stationary kernels. We call the choice of proto isotropic,
stationary linear functional, and dot product, respectively.
First, we note that G[proto] is simple for all three choices:

G[r · r] = �Id, G[c · r] = 0d⇥d, and G[x · y] = Id.

Kernels with the first and third input type are ubiquitous
and include the exponentiated quadratic, rational quadratic,
Matérn, and polynomial kernels. An important example of
the second type is the cosine kernel, which has been used to
approximate stationary kernels (Rahimi et al., 2007; Lázaro-
Gredilla et al., 2010; Gal and Turner, 2015) and is also a part
of the spectral mixture kernel (Wilson and Adams, 2013).
In the following, we systematically treat most of the kernels
and transformations in (Rasmussen and Williams, 2005)
to greatly expand the class of kernels for which structured
representations are available.

A Chain Rule Many kernels can be expressed as k = f�g
where g is scalar-valued. For these types of kernels, we have

G[f � g] = (f 0
� g) G[g] + (f 00

� g) rx[g]ry[g]
>.

That is, G[f � g] is a rank-one correction to G[g]. If G[g]
is structured with O(d) data, G[f � g] inherits this property.
As an immediate consequence, G[k] permits a matrix-vector
multiply in O(d) time for all isotropic, stationary, and dot-
product kernels that fall under the categories outlined above.
However, there are combinations and transformations of
these base kernels that give rise to more complex kernels
and enable more flexible, problem-dependent modeling.

Sums and Products First, covariance kernels are closed
under addition and multiplication. If all summands or co-
efficients are of the the same input-type, the sum kernel
has the same input type since (f � proto) + (g � proto) =
(f + g) � proto and similarly for products, so that no spe-
cial treatment is necessary beside the chain rule above. An
interesting case occurs when we combine kernels of differ-
ent input types or more complex composite kernels. For
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k =
Pr

i ki, we trivially have G[k] =
Pr

i G[ki], and so the
complexity of multiplying with G[k] is O(dr). For product
kernels k(x,y) = g(x,y)h(x,y), we have

G[k] = G[g]h+gG[h]+rx[g]ry[h]
>+rx[h]ry[g]

>,

which is a rank-two correction to the sum of the scaled
constituent gradient kernels elements – Gg and Gh – and
therefore only adds O(d) operations to the multiplication
with the constituent elements. In general, the application of
G to a product of r kernels k =

Qr
i ki gives rise to a rank-r

correction to the sum of the constituent gradient kernels:

G[k] =
rX

i=1

G[ki]pi + Jx[k]
>
P Jy[k], (1)

where pi =
Q

j 6=i ki and Pij =
Q

t 6=i,j kt, whose formation
would generally be O(r2). However, if ki 6= 0 for all i, we
have pi = k/ki and P = k D

�1
k (1r1

>
r � Ir) D

�1
k , where

k = [k1, . . . , kr], and Dk is the diagonal matrix with k on
the diagonal. A matrix-vector multiplication with (1) can
thus be computed in O(dr). If r ⇠ d, the expression is
generally not data-sparse unless the Jacobians are, which is
the case for the following special type of kernel product.

Direct Sums and Products Given a set of d kernels {ki}
each of which acts on a different input dimension, we
can define their direct product (resp. sum) as k(x,y) =Q

i ki(xi, yi) (resp.
P

i ki(xi, yi)), where xi corresponds
to the dimension on which ki acts. This separable structure
gives rise to sparse differential operators Gk and Jxk that
are zero except for

[Gki]ii = [@xi@yiki]
Y

j 6=i

kj , and [Jxk]ii = @xiki.

For direct sums, Gk is then simply diagonal: Giik =
@xi@yiki. For direct products, substituting these sparse ex-
pressions into the general product rule (1) above yields a
rank-one update to a diagonal matrix. Therefore, the compu-
tational complexity of multiplying a vector with G[k](x,y)
for separable kernels is O(d). Notably, the above struc-
ture can be readily generalized for block-separable kernels,
whose constituent kernels act on more than one dimension.
The O(d) complexity is also attained as long as every con-
stituent kernel only applies to a constant number of dimen-
sions as d ! 1, or itself allows a multiply that is linear in
the dimensionality of the space on which it acts.

Vertical Rescaling If k(x,y) = f(x)h(x,y)f(y) for a
scalar-valued f , then

G[k](x,y) = f(x)G[h](x,y)f(y) +

rx

⇥
f(x) k(x,y)

⇤ h(x,y) f(y)
f(x) 0

�
ry

⇥
f(y) k(x,y)

⇤>

Again, G[k] is a low-rank (rank two) correction to G[h].

Warping The so called “warping” of inputs to GPs is an
important technique for the incorporation of non-trivial prob-
lem structure, especially of a non-stationary nature (Snelson
et al., 2004; Lázaro-Gredilla, 2012; Marmin et al., 2018).
In particular, given some potentially vector-valued warping
function u : Rd

! R
r a warped kernel can be written as

k(x,y) = h(u(x),u(y)), which leads to

G[k](x,y) = J[u](x)> G[h](u(x),u(y)) J[u](y).

We can factor out the Jacobian factors as block-diagonal
matrices diag(J[u](X))ii = J[u](xi) from the gradient
kernel matrix K

r, leading to an efficient representation:

K
r = diag(J[u](X))> H

r diag(J[u](X)).

Taking advantage of the above structure, the complexity
of multiplication with the gradient kernel matrix can be re-
duced to O(n2r+ndr), which is O(n2d) for n > d � r.
Important examples of warping functions are energetic
norms or inner products of the form r

>
Er or x>

Ey for
some positive semi-definite matrix E. In this case, we can
factor E = U

>
U in a pre-computation that is independent

of n using a pivoted Cholesky decomposition using O(dr2)
operations for a rank r matrix, and let u(x) = Ux, so that
J[u] = U. This gives rise to a Kronecker product structure
in the Jacobian scaling matrix diag(J[u](X)) = In ⌦ U,
and enables subspace search techniques for BO, like the
ones of Wang et al. (2013), Eriksson et al. (2018), and
Kirschner et al. (2019), to take advantage of the structures
proposed here. If E is diagonal as for automatic relevance
determination (ARD), one can simply use U =

p
E, and

the complexity of multiplying with K
r is O(n2d + nd).

Notably, the matrix structure and its scaling also extend to
complex warping functions u, like Wilson et al. (2016)’s
deep kernel learning model.

Composite Kernels Systematic application of the rules
and data-sparse representations of Gk for the transforma-
tions and compositions of kernels above gives rise to similar
representations for many more complex kernels. Exam-
ples include the neural network kernel arcsin(x̃ · ỹ), where
x̃ = x/

p
kxk22 + 1, the RBF-network kernel exp(�kxk

2
�

r · r/2� kyk
2), the spectral mixture kernel of Wilson and

Adams (2013), and the kernel �(x)>W�(y)h(x,y) corre-
sponding to a linear regression with variable coefficients,
where �(x) are the regression features, W is the prior co-
variance of the weights, and h is a secondary kernel control-
ling the variability of the weights (Rasmussen and Williams,
2005). See Figure 1 for a depiction of these kernels’ compu-
tational graphs, where each node represents a computation
that we treated in this section. These examples highlight the
generality of the proposed approach, since it applies with-
out specializations to these kernels, and is simultaneously
the first to enable a linear-in-d multiply with their gradient
kernel matrices Kr.

Sums and Products of kernels: 𝑘 = ∏#
$ 𝑘#
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k =
Pr

i ki, we trivially have G[k] =
Pr

i G[ki], and so the
complexity of multiplying with G[k] is O(dr). For product
kernels k(x,y) = g(x,y)h(x,y), we have

G[k] = G[g]h+gG[h]+rx[g]ry[h]
>+rx[h]ry[g]

>,

which is a rank-two correction to the sum of the scaled
constituent gradient kernels elements – Gg and Gh – and
therefore only adds O(d) operations to the multiplication
with the constituent elements. In general, the application of
G to a product of r kernels k =

Qr
i ki gives rise to a rank-r

correction to the sum of the constituent gradient kernels:

G[k] =
rX

i=1

G[ki]pi + Jx[k]
>
P Jy[k], (1)

where pi =
Q

j 6=i ki and Pij =
Q

t 6=i,j kt, whose formation
would generally be O(r2). However, if ki 6= 0 for all i, we
have pi = k/ki and P = k D

�1
k (1r1

>
r � Ir) D

�1
k , where

k = [k1, . . . , kr], and Dk is the diagonal matrix with k on
the diagonal. A matrix-vector multiplication with (1) can
thus be computed in O(dr). If r ⇠ d, the expression is
generally not data-sparse unless the Jacobians are, which is
the case for the following special type of kernel product.

Direct Sums and Products Given a set of d kernels {ki}
each of which acts on a different input dimension, we
can define their direct product (resp. sum) as k(x,y) =Q

i ki(xi, yi) (resp.
P

i ki(xi, yi)), where xi corresponds
to the dimension on which ki acts. This separable structure
gives rise to sparse differential operators Gk and Jxk that
are zero except for

[Gki]ii = [@xi@yiki]
Y

j 6=i

kj , and [Jxk]ii = @xiki.

For direct sums, Gk is then simply diagonal: Giik =
@xi@yiki. For direct products, substituting these sparse ex-
pressions into the general product rule (1) above yields a
rank-one update to a diagonal matrix. Therefore, the compu-
tational complexity of multiplying a vector with G[k](x,y)
for separable kernels is O(d). Notably, the above struc-
ture can be readily generalized for block-separable kernels,
whose constituent kernels act on more than one dimension.
The O(d) complexity is also attained as long as every con-
stituent kernel only applies to a constant number of dimen-
sions as d ! 1, or itself allows a multiply that is linear in
the dimensionality of the space on which it acts.

Vertical Rescaling If k(x,y) = f(x)h(x,y)f(y) for a
scalar-valued f , then

G[k](x,y) = f(x)G[h](x,y)f(y) +

rx

⇥
f(x) k(x,y)

⇤ h(x,y) f(y)
f(x) 0

�
ry

⇥
f(y) k(x,y)

⇤>

Again, G[k] is a low-rank (rank two) correction to G[h].

Warping The so called “warping” of inputs to GPs is an
important technique for the incorporation of non-trivial prob-
lem structure, especially of a non-stationary nature (Snelson
et al., 2004; Lázaro-Gredilla, 2012; Marmin et al., 2018).
In particular, given some potentially vector-valued warping
function u : Rd

! R
r a warped kernel can be written as

k(x,y) = h(u(x),u(y)), which leads to

G[k](x,y) = J[u](x)> G[h](u(x),u(y)) J[u](y).

We can factor out the Jacobian factors as block-diagonal
matrices diag(J[u](X))ii = J[u](xi) from the gradient
kernel matrix K

r, leading to an efficient representation:

K
r = diag(J[u](X))> H

r diag(J[u](X)).

Taking advantage of the above structure, the complexity
of multiplication with the gradient kernel matrix can be re-
duced to O(n2r+ndr), which is O(n2d) for n > d � r.
Important examples of warping functions are energetic
norms or inner products of the form r

>
Er or x>

Ey for
some positive semi-definite matrix E. In this case, we can
factor E = U

>
U in a pre-computation that is independent

of n using a pivoted Cholesky decomposition using O(dr2)
operations for a rank r matrix, and let u(x) = Ux, so that
J[u] = U. This gives rise to a Kronecker product structure
in the Jacobian scaling matrix diag(J[u](X)) = In ⌦ U,
and enables subspace search techniques for BO, like the
ones of Wang et al. (2013), Eriksson et al. (2018), and
Kirschner et al. (2019), to take advantage of the structures
proposed here. If E is diagonal as for automatic relevance
determination (ARD), one can simply use U =

p
E, and

the complexity of multiplying with K
r is O(n2d + nd).

Notably, the matrix structure and its scaling also extend to
complex warping functions u, like Wilson et al. (2016)’s
deep kernel learning model.

Composite Kernels Systematic application of the rules
and data-sparse representations of Gk for the transforma-
tions and compositions of kernels above gives rise to similar
representations for many more complex kernels. Exam-
ples include the neural network kernel arcsin(x̃ · ỹ), where
x̃ = x/

p
kxk22 + 1, the RBF-network kernel exp(�kxk

2
�

r · r/2� kyk
2), the spectral mixture kernel of Wilson and

Adams (2013), and the kernel �(x)>W�(y)h(x,y) corre-
sponding to a linear regression with variable coefficients,
where �(x) are the regression features, W is the prior co-
variance of the weights, and h is a secondary kernel control-
ling the variability of the weights (Rasmussen and Williams,
2005). See Figure 1 for a depiction of these kernels’ compu-
tational graphs, where each node represents a computation
that we treated in this section. These examples highlight the
generality of the proposed approach, since it applies with-
out specializations to these kernels, and is simultaneously
the first to enable a linear-in-d multiply with their gradient
kernel matrices Kr.

Direct sums and products:
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k =
Pr

i ki, we trivially have G[k] =
Pr

i G[ki], and so the
complexity of multiplying with G[k] is O(dr). For product
kernels k(x,y) = g(x,y)h(x,y), we have

G[k] = G[g]h+gG[h]+rx[g]ry[h]
>+rx[h]ry[g]

>,

which is a rank-two correction to the sum of the scaled
constituent gradient kernels elements – Gg and Gh – and
therefore only adds O(d) operations to the multiplication
with the constituent elements. In general, the application of
G to a product of r kernels k =

Qr
i ki gives rise to a rank-r

correction to the sum of the constituent gradient kernels:

G[k] =
rX

i=1

G[ki]pi + Jx[k]
>
P Jy[k], (1)

where pi =
Q

j 6=i ki and Pij =
Q

t 6=i,j kt, whose formation
would generally be O(r2). However, if ki 6= 0 for all i, we
have pi = k/ki and P = k D

�1
k (1r1

>
r � Ir) D

�1
k , where

k = [k1, . . . , kr], and Dk is the diagonal matrix with k on
the diagonal. A matrix-vector multiplication with (1) can
thus be computed in O(dr). If r ⇠ d, the expression is
generally not data-sparse unless the Jacobians are, which is
the case for the following special type of kernel product.

Direct Sums and Products Given a set of d kernels {ki}
each of which acts on a different input dimension, we
can define their direct product (resp. sum) as k(x,y) =Q

i ki(xi, yi) (resp.
P

i ki(xi, yi)), where xi corresponds
to the dimension on which ki acts. This separable structure
gives rise to sparse differential operators Gk and Jxk that
are zero except for

[Gki]ii = [@xi@yiki]
Y

j 6=i

kj , and [Jxk]ii = @xiki.

For direct sums, Gk is then simply diagonal: Giik =
@xi@yiki. For direct products, substituting these sparse ex-
pressions into the general product rule (1) above yields a
rank-one update to a diagonal matrix. Therefore, the compu-
tational complexity of multiplying a vector with G[k](x,y)
for separable kernels is O(d). Notably, the above struc-
ture can be readily generalized for block-separable kernels,
whose constituent kernels act on more than one dimension.
The O(d) complexity is also attained as long as every con-
stituent kernel only applies to a constant number of dimen-
sions as d ! 1, or itself allows a multiply that is linear in
the dimensionality of the space on which it acts.

Vertical Rescaling If k(x,y) = f(x)h(x,y)f(y) for a
scalar-valued f , then

G[k](x,y) = f(x)G[h](x,y)f(y) +

rx

⇥
f(x) k(x,y)

⇤ h(x,y) f(y)
f(x) 0

�
ry

⇥
f(y) k(x,y)

⇤>

Again, G[k] is a low-rank (rank two) correction to G[h].

Warping The so called “warping” of inputs to GPs is an
important technique for the incorporation of non-trivial prob-
lem structure, especially of a non-stationary nature (Snelson
et al., 2004; Lázaro-Gredilla, 2012; Marmin et al., 2018).
In particular, given some potentially vector-valued warping
function u : Rd

! R
r a warped kernel can be written as

k(x,y) = h(u(x),u(y)), which leads to

G[k](x,y) = J[u](x)> G[h](u(x),u(y)) J[u](y).

We can factor out the Jacobian factors as block-diagonal
matrices diag(J[u](X))ii = J[u](xi) from the gradient
kernel matrix K

r, leading to an efficient representation:

K
r = diag(J[u](X))> H

r diag(J[u](X)).

Taking advantage of the above structure, the complexity
of multiplication with the gradient kernel matrix can be re-
duced to O(n2r+ndr), which is O(n2d) for n > d � r.
Important examples of warping functions are energetic
norms or inner products of the form r

>
Er or x>

Ey for
some positive semi-definite matrix E. In this case, we can
factor E = U

>
U in a pre-computation that is independent

of n using a pivoted Cholesky decomposition using O(dr2)
operations for a rank r matrix, and let u(x) = Ux, so that
J[u] = U. This gives rise to a Kronecker product structure
in the Jacobian scaling matrix diag(J[u](X)) = In ⌦ U,
and enables subspace search techniques for BO, like the
ones of Wang et al. (2013), Eriksson et al. (2018), and
Kirschner et al. (2019), to take advantage of the structures
proposed here. If E is diagonal as for automatic relevance
determination (ARD), one can simply use U =

p
E, and

the complexity of multiplying with K
r is O(n2d + nd).

Notably, the matrix structure and its scaling also extend to
complex warping functions u, like Wilson et al. (2016)’s
deep kernel learning model.

Composite Kernels Systematic application of the rules
and data-sparse representations of Gk for the transforma-
tions and compositions of kernels above gives rise to similar
representations for many more complex kernels. Exam-
ples include the neural network kernel arcsin(x̃ · ỹ), where
x̃ = x/

p
kxk22 + 1, the RBF-network kernel exp(�kxk

2
�

r · r/2� kyk
2), the spectral mixture kernel of Wilson and

Adams (2013), and the kernel �(x)>W�(y)h(x,y) corre-
sponding to a linear regression with variable coefficients,
where �(x) are the regression features, W is the prior co-
variance of the weights, and h is a secondary kernel control-
ling the variability of the weights (Rasmussen and Williams,
2005). See Figure 1 for a depiction of these kernels’ compu-
tational graphs, where each node represents a computation
that we treated in this section. These examples highlight the
generality of the proposed approach, since it applies with-
out specializations to these kernels, and is simultaneously
the first to enable a linear-in-d multiply with their gradient
kernel matrices Kr.
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k =
Pr

i ki, we trivially have G[k] =
Pr

i G[ki], and so the
complexity of multiplying with G[k] is O(dr). For product
kernels k(x,y) = g(x,y)h(x,y), we have

G[k] = G[g]h+gG[h]+rx[g]ry[h]
>+rx[h]ry[g]

>,

which is a rank-two correction to the sum of the scaled
constituent gradient kernels elements – Gg and Gh – and
therefore only adds O(d) operations to the multiplication
with the constituent elements. In general, the application of
G to a product of r kernels k =

Qr
i ki gives rise to a rank-r

correction to the sum of the constituent gradient kernels:

G[k] =
rX

i=1

G[ki]pi + Jx[k]
>
P Jy[k], (1)

where pi =
Q

j 6=i ki and Pij =
Q

t 6=i,j kt, whose formation
would generally be O(r2). However, if ki 6= 0 for all i, we
have pi = k/ki and P = k D

�1
k (1r1

>
r � Ir) D

�1
k , where

k = [k1, . . . , kr], and Dk is the diagonal matrix with k on
the diagonal. A matrix-vector multiplication with (1) can
thus be computed in O(dr). If r ⇠ d, the expression is
generally not data-sparse unless the Jacobians are, which is
the case for the following special type of kernel product.

Direct Sums and Products Given a set of d kernels {ki}
each of which acts on a different input dimension, we
can define their direct product (resp. sum) as k(x,y) =Q

i ki(xi, yi) (resp.
P

i ki(xi, yi)), where xi corresponds
to the dimension on which ki acts. This separable structure
gives rise to sparse differential operators Gk and Jxk that
are zero except for

[Gki]ii = [@xi@yiki]
Y

j 6=i

kj , and [Jxk]ii = @xiki.

For direct sums, Gk is then simply diagonal: Giik =
@xi@yiki. For direct products, substituting these sparse ex-
pressions into the general product rule (1) above yields a
rank-one update to a diagonal matrix. Therefore, the compu-
tational complexity of multiplying a vector with G[k](x,y)
for separable kernels is O(d). Notably, the above struc-
ture can be readily generalized for block-separable kernels,
whose constituent kernels act on more than one dimension.
The O(d) complexity is also attained as long as every con-
stituent kernel only applies to a constant number of dimen-
sions as d ! 1, or itself allows a multiply that is linear in
the dimensionality of the space on which it acts.

Vertical Rescaling If k(x,y) = f(x)h(x,y)f(y) for a
scalar-valued f , then

G[k](x,y) = f(x)G[h](x,y)f(y) +

rx

⇥
f(x) k(x,y)

⇤ h(x,y) f(y)
f(x) 0

�
ry

⇥
f(y) k(x,y)

⇤>

Again, G[k] is a low-rank (rank two) correction to G[h].

Warping The so called “warping” of inputs to GPs is an
important technique for the incorporation of non-trivial prob-
lem structure, especially of a non-stationary nature (Snelson
et al., 2004; Lázaro-Gredilla, 2012; Marmin et al., 2018).
In particular, given some potentially vector-valued warping
function u : Rd

! R
r a warped kernel can be written as

k(x,y) = h(u(x),u(y)), which leads to

G[k](x,y) = J[u](x)> G[h](u(x),u(y)) J[u](y).

We can factor out the Jacobian factors as block-diagonal
matrices diag(J[u](X))ii = J[u](xi) from the gradient
kernel matrix K

r, leading to an efficient representation:

K
r = diag(J[u](X))> H

r diag(J[u](X)).

Taking advantage of the above structure, the complexity
of multiplication with the gradient kernel matrix can be re-
duced to O(n2r+ndr), which is O(n2d) for n > d � r.
Important examples of warping functions are energetic
norms or inner products of the form r

>
Er or x>

Ey for
some positive semi-definite matrix E. In this case, we can
factor E = U

>
U in a pre-computation that is independent

of n using a pivoted Cholesky decomposition using O(dr2)
operations for a rank r matrix, and let u(x) = Ux, so that
J[u] = U. This gives rise to a Kronecker product structure
in the Jacobian scaling matrix diag(J[u](X)) = In ⌦ U,
and enables subspace search techniques for BO, like the
ones of Wang et al. (2013), Eriksson et al. (2018), and
Kirschner et al. (2019), to take advantage of the structures
proposed here. If E is diagonal as for automatic relevance
determination (ARD), one can simply use U =

p
E, and

the complexity of multiplying with K
r is O(n2d + nd).

Notably, the matrix structure and its scaling also extend to
complex warping functions u, like Wilson et al. (2016)’s
deep kernel learning model.

Composite Kernels Systematic application of the rules
and data-sparse representations of Gk for the transforma-
tions and compositions of kernels above gives rise to similar
representations for many more complex kernels. Exam-
ples include the neural network kernel arcsin(x̃ · ỹ), where
x̃ = x/

p
kxk22 + 1, the RBF-network kernel exp(�kxk

2
�

r · r/2� kyk
2), the spectral mixture kernel of Wilson and

Adams (2013), and the kernel �(x)>W�(y)h(x,y) corre-
sponding to a linear regression with variable coefficients,
where �(x) are the regression features, W is the prior co-
variance of the weights, and h is a secondary kernel control-
ling the variability of the weights (Rasmussen and Williams,
2005). See Figure 1 for a depiction of these kernels’ compu-
tational graphs, where each node represents a computation
that we treated in this section. These examples highlight the
generality of the proposed approach, since it applies with-
out specializations to these kernels, and is simultaneously
the first to enable a linear-in-d multiply with their gradient
kernel matrices Kr.

Rescaling 

Warping

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



The Solution: Structure-Aware AD
Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

x · y f(x)k(x,y)f(y) sin�1
�k

(a) Neural Network with f(x) = (x ·x+1)�1/2

r · r e�·
� k f(x)k(x,y)f(y)

(b) RBF Network with f(x) = e
�x·x

u(x),u(y) x · y

k ⇥ h
h

(c) Variable Linear Regression

r · r e�·
� k

k ⇥ h
c · r cos �k k + h

. . .

(d) Spectral Mixture

Figure 1: Computational graphs of composite kernels whose gradient kernel matrix can be expressed with the data-sparse
structured expressions derived in Section 3.2. Inside a node, k and h refer to kernels computed by previous nodes.

3.3. Hessian Kernel Structure

Under appropriate differentiability assumptions (see Sec. A),
we can condition a GP on Hessian information. However,
incorporating second-order information into GPs has so far
– except for one and two-dimensional test problems by Wu
et al. (2017a) – not been explored. This is likely due to
the prohibitive O(n2d4) scaling for a matrix multiply with
the associated covariance matrix and O(n3d6) scaling for
direct matrix inversion. In addition to the special structure
for the gradient-Hessian cross-covariance, already reported
by De Roos et al. (2021), we derive a structured representa-
tion of the Hessian-Hessian covariance for isotropic kernels,
enabling efficient computations with second-order informa-
tion. In particular, letting hx = vec(Hx) where Hx is the
Hessian w.r.t. x and r = r · r:

hxr
>
y k(x,y) = �f 00(r)(Id ⌦ r+ r⌦ Id)

� [f 00(r)vec(Id) + f 000(r)vec(rr>)]r>, and

hxh
>
y k(x,y) = (Id2 + Sdd)[f

00(r)Id2

+ f 000(r)(rr> � rr
>)] +VCV

>,

where V =
⇥
vec(Id) vec(rr>)

⇤
2 Rd2⇥2, C 2 R2⇥2

with Cij = @(i+j)f(r), Sdd is the “shuffle” matrix that sat-
isfies Sddvec(A) = vec(A>), and A�B = A⌦I+I⌦B

is the Kronecker sum. Thus, it is possible to multiply with
covariance matrices that arise from conditioning on second-
order information in O(n2d2), which is linear in the O(d2)
amount of information contained in the Hessian matrix and
therefore optimal with respect to the dimensionality. This is
an attractive complexity in moderate dimensionality since
Hessian observations are highly informative of a function’s
local behavior. For derivations of the second-order covari-
ances for more kernel types and transformations, see Sec. C.

3.4. An Implementation:
CovarianceFunctions.jl

To take advantage of the analytical observations above in an
automatic fashion, several technical challenges need to be
overcome. First, we need a representation of the computa-
tional graph of a kernel function that is built from the basic

constituents and transformations that we outlined above,
akin to Figure 1. Second, we need to build matrix-free
representations of the gradient kernel matrices to maintain
data-sparse structure. Here, we briefly describe how we
designed CovarianceFunctions.jl, an implementa-
tion of the structured AD technique that is enabled by the
analytical derivations above, and supporting libraries, all
written in Julia (Bezanson et al., 2017).

CovarianceFunctions.jl represents kernels at the
level of user-defined types. It is in principle possible to hook
into the abstract syntax tree (AST) to recognize these types
of structures more generally (Innes, 2018), but this would
undoubtedly come at the cost of increased complexity. It is
unclear if this generality would have applications outside
of the scope of this work. A user can readily extend the
framework with a new kernel type if it can not already be
expressed as a combinations and transformations of existing
kernels. All that is necessary is the definition of its eval-
uation and the following short function: input_trait
returns the type of input the kernel depends on: isotropic,
dot-product, or the stationary type c · r and automatically
detects homogeneous products and sums of kernels with
these input types. As an example, for the rational quadratic
kernel, we have

input_trait(RQ↵) = Isotropic()

Our implementation uses ForwardDiff.jl (Revels
et al., 2016) to compute the regular derivatives and gra-
dients that arise in the structured expressions to achieve a
high level of generality and for a robust fall-back implemen-
tation of all the relevant operators in case no structure can
be inferred in the input kernel. Even though the memory
requirements of the n2 data-sparse blocks are much reduced
to the dense case, a machine can nevertheless run out of
memory if the number of samples n gets very large and all
blocks are stored in memory. To scale the method up to very
large n, our implementation employs lazy evaluation of the
gradient kernel matrix to achieve a constant, O(1), memory
complexity for a matrix-vector multiply.

The main benefit of this system is that researchers and practi-
tioners of BO do not need to derive a special structured rep-
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where f̃
0(r)

def
= f

0(r)/
p

n(x)n(y), and

[Gk](x,y) = f̃
0(r)Id +

⇥
x y

⇤
A

⇥
x y

⇤>
,

where

A
def
=

"
�

g(r)
n(x)

g(r)r
n(x)n(y)

f̃
00(r) �

g(r)
n(y)

#
, f̃

00(r)
def
=

f
00(r)

n(x)n(y)
, and g(r)

def
=

⇣
f̃
0(r) + f̃

00(r)r
⌘
.

Notably, this is a rank-two correction to the identity, compared to the rank-one corrections for isotropic and dot-product kernels above.

C. Hessian Structure
Note that for arbitrary vectors a,b, not necessarily of the same length, a⌦ b = vec(ba>). This will come in handy to simplify certain
expressions in the following.

Dot-Product Kernels First, note that

r
>
y vec(yy>) = Id ⌦ y + y ⌦ Id ryr

>
y vec(yy>) = Sdd + Id2 .

Where Sdd is a "shuffle" matrix such that Sddvec(A) = vec(A>), and for square matrices A 2 Rn⇥n and B 2 Rm⇥m, the Kronecker
sum is defined as A�B

def
= A⌦ Im + In ⌦B. Then for dot-product kernels, we have

[hxk](x,y) = f
00(r)vec(yy>).

[hxr
>
y k](x,y) = f

00(r)(Id ⌦ y + y ⌦ Id) + f
000(r)vec(yy>)x>

.

[h>
y hxk](x,y) = (Id2 + Sdd)[f

00(r)Id2 + f
000(r)(yx>

� yx
>)] + f

0000(r)vec(yy>)vec(xx>)>.

Isotropic Kernels Then for isotropic product kernels with r = krk
2
2, we have

Jxvec(rr>) = Id ⌦ r+ r⌦ Id Hyvec(rr>) = Sdd + Id2 .

Which implies

[hxk](x,y) = f
0(r)vec(Id) + f

00(r)vec(rr>).

[hxr
>
y k](x,y) = �f

00(r)(Id ⌦ r+ r⌦ Id)� [f 00(r)vec(Id) + f
000(r)vec(rr>)]r>.

h
>
y hxk(x,y) = (Id2 + Sdd)[f

00(r)Id2 + f
000(r)(rr> � rr

>)]

+
⇥
vec(Id) vec(rr>)

⇤ f 00(r) f
000(r)

f
000(r) f

0000(r)

� ⇥
vec(Id) vec(rr>)

⇤>
.

A Chain Rule k(x,y) = (f � g)(x,y).

[hxk](x,y) = f
0(r)hx[g] + f

00(r)vec(rxgrxg
>).

[hxr
>
y k](x,y) = f

00(r)(Hxg ⌦ryg +ryg ⌦Hxg) + [f 00(r)hx[g]) + f
000(r)vec(rxgrxg

>)]ryg
>
.

hxh
>
y k(x,y) = (Id2 + Sdd)[f

00(r)Id2 + f
000(r)(rxgrxg

>
�rygryg

>)]

+
⇥
hxg vec(rxgrxg

>)
⇤ f 00(r) f

000(r)
f
000(r) f

0000(r)

� ⇥
hyg vec(rygryg

>)
⇤>

.
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Vertical Scaling k(x,y) = f(x)h(x,y)f(y) for a scalar-valued f , then

hxk(x,y) =hx[f(x)h(x,y)]f(y)

= [f(x)hx[h](x,y)

+ h[f ](x)h(x,y)

+rx[h](x,y)⌦r[f ](x)

+r[f ](x)⌦rx[h](x,y)] f(y)

[hxr
>
y k](x,y) = [f(x)[hxr

>
y h](x,y)

+ h[f ](x)[r>
y h](x,y)

+G[h](x,y)⌦r[f ](x)

+r[f ](x)⌦G[h](x,y)] f(y)

+ hx[f(x)h(x,y)]r
>
y f(y)

[hxh
>
y k](x,y) = [f(x)[hxh

>
y h](x,y)

+ h[f ](x)[h>
y h](x,y)

+G[h](x,y)⌦r[f ](x)r>[f ](y)

+r[f ](x)r>[f ](y)⌦G[h](x,y)] f(y)

+ hx[f(x)h(x,y)]h
>
y f(y)

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in O(d2) operations.

Warping k(x,y) = h(u(x),u(y)),

hxk(x,y) = (J⌦ J)>[u](x) [hxh](u(x),u(y))

[hxr
>
y k](x,y) = (J⌦ J)>[u](x) [hxr

>
y h](u(x),u(y)) J[u](y)

[hxh
>
y k](x,y) = (J⌦ J)>[u](x) [hxh

>
y h](u(x),u(y)) (J⌦ J)[u](y).

We therefore see that KH = hxh
>
y k(X) = DJ[hxh

>
y h](X)DJ, where DJ is the block-diagonal matrix whose i

th block is equal to
(J ⌦ J)[u](xi) = J[u](xi) ⌦ J[u](xi). Note that for linearly warped kernels for which u(x) = Ux, where U 2 Rr⇥d, we have
(J⌦ J)[u](xi) = U⌦U so that we can multiply with the kernel matrix K

H in O(n2
r
2 + n(d2r+ r

2
d)). The complexity is due to the

following property of Kronecker product:
(U⌦U)vec(H) = vec(UHU

>),

which can be computed in O(d2r + r
2
d) for every of the n Hessian observations.

D. Combining Derivative Orders
Combining observations of the function values and its first and second derivatives is straightforward via the following block-structured
kernel: 2

4
k ry[k]

>
hy[k]

>

rx[k] G[k] Jx[hy[k]]
hx[k] Jy[hx[k]] H[k]

3

5 .

If all constituent blocks permit a fast multiply - O(d) for gradient and O(d2) for Hessian-related blocks - the entire structure permits a
O(d2) multiply, even though the naïve cost is O(d4). If only value and gradient observations are required, only the top-left two-by-two
block is necessary, which can be carried out in O(d) in the structured case and which we implemented as the ValueGradientKernel.

Discussion Recall that the computational complexity of multiplying with the gradient and Hessian kernel matrices is O(n2
d) and

O(n2
d
2), respectively. Thus, the gradient-based method can only make a factor of O(

p
d) more observations than the Hessian-based

method for the same computational cost. Therefore, it is computationally easier to incorporate additional information at a single point
than it is to combine first-order information at several points. Since the Hessian contains d times more pieces of information than the
gradient, the former could be more efficient in certain scenarios. We compare the scaling of the multiplications arising from first- and
second-order data experimentally in Section 4.1 but leave a comprehensive comparison of first-order and second-order BO to future work.
The main goal of the current work is to enable such investigations in the first place by providing the required theoretical advances and
practical infrastructure, see CovarianceFunctions.jl.
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where f̃
0(r)

def
= f

0(r)/
p

n(x)n(y), and

[Gk](x,y) = f̃
0(r)Id +

⇥
x y

⇤
A

⇥
x y

⇤>
,

where

A
def
=

"
�

g(r)
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g(r)r
n(x)n(y)

f̃
00(r) �

g(r)
n(y)

#
, f̃

00(r)
def
=

f
00(r)

n(x)n(y)
, and g(r)

def
=

⇣
f̃
0(r) + f̃

00(r)r
⌘
.

Notably, this is a rank-two correction to the identity, compared to the rank-one corrections for isotropic and dot-product kernels above.

C. Hessian Structure
Note that for arbitrary vectors a,b, not necessarily of the same length, a⌦ b = vec(ba>). This will come in handy to simplify certain
expressions in the following.

Dot-Product Kernels First, note that

r
>
y vec(yy>) = Id ⌦ y + y ⌦ Id ryr

>
y vec(yy>) = Sdd + Id2 .

Where Sdd is a "shuffle" matrix such that Sddvec(A) = vec(A>), and for square matrices A 2 Rn⇥n and B 2 Rm⇥m, the Kronecker
sum is defined as A�B

def
= A⌦ Im + In ⌦B. Then for dot-product kernels, we have

[hxk](x,y) = f
00(r)vec(yy>).

[hxr
>
y k](x,y) = f

00(r)(Id ⌦ y + y ⌦ Id) + f
000(r)vec(yy>)x>

.

[h>
y hxk](x,y) = (Id2 + Sdd)[f

00(r)Id2 + f
000(r)(yx>

� yx
>)] + f

0000(r)vec(yy>)vec(xx>)>.

Isotropic Kernels Then for isotropic product kernels with r = krk
2
2, we have

Jxvec(rr>) = Id ⌦ r+ r⌦ Id Hyvec(rr>) = Sdd + Id2 .

Which implies

[hxk](x,y) = f
0(r)vec(Id) + f

00(r)vec(rr>).

[hxr
>
y k](x,y) = �f

00(r)(Id ⌦ r+ r⌦ Id)� [f 00(r)vec(Id) + f
000(r)vec(rr>)]r>.

h
>
y hxk(x,y) = (Id2 + Sdd)[f

00(r)Id2 + f
000(r)(rr> � rr

>)]

+
⇥
vec(Id) vec(rr>)

⇤ f 00(r) f
000(r)

f
000(r) f

0000(r)

� ⇥
vec(Id) vec(rr>)

⇤>
.

A Chain Rule k(x,y) = (f � g)(x,y).

[hxk](x,y) = f
0(r)hx[g] + f

00(r)vec(rxgrxg
>).

[hxr
>
y k](x,y) = f

00(r)(Hxg ⌦ryg +ryg ⌦Hxg) + [f 00(r)hx[g]) + f
000(r)vec(rxgrxg

>)]ryg
>
.

hxh
>
y k(x,y) = (Id2 + Sdd)[f

00(r)Id2 + f
000(r)(rxgrxg

>
�rygryg

>)]

+
⇥
hxg vec(rxgrxg

>)
⇤ f 00(r) f

000(r)
f
000(r) f

0000(r)

� ⇥
hyg vec(rygryg
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⇤>

.
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Vertical Scaling k(x,y) = f(x)h(x,y)f(y) for a scalar-valued f , then

hxk(x,y) =hx[f(x)h(x,y)]f(y)

= [f(x)hx[h](x,y)

+ h[f ](x)h(x,y)

+rx[h](x,y)⌦r[f ](x)

+r[f ](x)⌦rx[h](x,y)] f(y)
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+r[f ](x)r>[f ](y)⌦G[h](x,y)] f(y)

+ hx[f(x)h(x,y)]h
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y f(y)

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in O(d2) operations.

Warping k(x,y) = h(u(x),u(y)),

hxk(x,y) = (J⌦ J)>[u](x) [hxh](u(x),u(y))

[hxr
>
y k](x,y) = (J⌦ J)>[u](x) [hxr
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y h](u(x),u(y)) J[u](y)

[hxh
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y k](x,y) = (J⌦ J)>[u](x) [hxh
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y h](u(x),u(y)) (J⌦ J)[u](y).

We therefore see that KH = hxh
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y k(X) = DJ[hxh
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y h](X)DJ, where DJ is the block-diagonal matrix whose i

th block is equal to
(J ⌦ J)[u](xi) = J[u](xi) ⌦ J[u](xi). Note that for linearly warped kernels for which u(x) = Ux, where U 2 Rr⇥d, we have
(J⌦ J)[u](xi) = U⌦U so that we can multiply with the kernel matrix K

H in O(n2
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d)). The complexity is due to the

following property of Kronecker product:
(U⌦U)vec(H) = vec(UHU

>),

which can be computed in O(d2r + r
2
d) for every of the n Hessian observations.

D. Combining Derivative Orders
Combining observations of the function values and its first and second derivatives is straightforward via the following block-structured
kernel: 2

4
k ry[k]

>
hy[k]

>

rx[k] G[k] Jx[hy[k]]
hx[k] Jy[hx[k]] H[k]

3

5 .

If all constituent blocks permit a fast multiply - O(d) for gradient and O(d2) for Hessian-related blocks - the entire structure permits a
O(d2) multiply, even though the naïve cost is O(d4). If only value and gradient observations are required, only the top-left two-by-two
block is necessary, which can be carried out in O(d) in the structured case and which we implemented as the ValueGradientKernel.

Discussion Recall that the computational complexity of multiplying with the gradient and Hessian kernel matrices is O(n2
d) and

O(n2
d
2), respectively. Thus, the gradient-based method can only make a factor of O(

p
d) more observations than the Hessian-based

method for the same computational cost. Therefore, it is computationally easier to incorporate additional information at a single point
than it is to combine first-order information at several points. Since the Hessian contains d times more pieces of information than the
gradient, the former could be more efficient in certain scenarios. We compare the scaling of the multiplications arising from first- and
second-order data experimentally in Section 4.1 but leave a comprehensive comparison of first-order and second-order BO to future work.
The main goal of the current work is to enable such investigations in the first place by providing the required theoretical advances and
practical infrastructure, see CovarianceFunctions.jl.

𝑂 𝑑! MVM with 𝐻

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



Performance Comparison to Prior Work

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
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Figure 3: Benchmarks of matrix-vector multiplications with the gradient kernel matrices using the exponentiated dot-product
(top) and neural network kernels (bottom). Compared to the performance of the rational quadratic kernel in Figure 2, the
results for the composite neural network kernel are virtually indistinguishable and also exhibit the fast O(d) scaling.

Figure 4: Time to first MVM of GPyTorch, D-SKIP, and
our work for RBF gradient kernel matrices with n = 1024.

Table 1: MVM complexity with select gradient kernel matrices.
SM = spectral mixture kernel, NN = neural network kernel.
⇤See the discussion on the right about D-SKIP’s complexity.

RBF SM NN

GPFlow / SKLearn 7 7 7
GPyTorch O(n2d2) 7 7

(Eriksson et al., 2018) O(nd2)⇤ 7 7
(De Roos et al., 2021) O(n2d) 7 7

Our work O(n2d) O(n2d) O(n2d)

Eriksson et al. (2018)’s D-SKIP D-SKIP is an approxi-
mate method and requires that the kernel can be expressed
as a separable product and further, that the resulting con-
stituent kernel matrices have a low rank. In contrast our
method is mathematically exact and applies to a large class
of kernels without restriction. D-SKIP needs an upfront
cost of O(d2(n + m logm + r3n log d)), followed by a
matrix-vector multiplication (MVM) cost of O(dr2n) for
constituent kernel matrices of rank r and m inducing points
per dimension. For a constant rank r, D-SKIP’s MVM
scales both linearly in n and d, while the method proposed
herein scales quadratically in n. See Figure 4 for a compari-
son of D-SKIP’s real-world performance, where D-SKIP’s
MVM scales linearly in d, but the required pre-processing
scales quadratically in d and dominates the total runtime.
Note that D-SKIP’s implementation is restricted to d > 4,
since D-SKI is faster in this regime. For d  32, D-SKIP’s
pure MVM times are faster than our method, whose runtime
grows sublinearly until d = 64 because it takes advantage of
vector registers and SIMD instructions. Notably, the linear
extrapolation of D-SKIP’s pure MVM times without pre-
processing is within a small factor (< 2) of the timings of
our work for d � 64, implying that if D-SKIP were applied
to higher dimensions, the pure MVM times of both meth-
ods would be comparable for a moderately large number of
observations (n = 1024). Figure 6 in Section E shows that
D-SKIP is approximate and looses accuracy as d increases,
while our method is accurate to machine precision.

D-SKIP from “Scaling Gaussian 
process regression with derivatives.”
Eriksson et al. NeurIPS 2018.

GPyTorch from "Gpytorch: Blackbox 
matrix-matrix gaussian process 
inference with gpu acceleration.” 
Gardner et al. NeurIPS 2018.



Accuracy Comparison to Prior Work

D-SKIP from “Scaling Gaussian process regression with derivatives.” Eriksson et al. NeurIPS 2018.



Bayesian Optimization Benchmarks

Comparing against
• Random sampling
• Convex optimization (L-BFGS)
• Convex optimization with restarts (L-BFGS-R)
• Bayesian Optimization (BO)

• BO with quadratic mixture kernel (BO-Q)
• First-order BO (FOBO)
• FOBO with quadratic mixture kernel (FOBO-Q)

Proposed / scaled by our work
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CovarianceFunctions.jl
Our methods are now available and open source at:

github.com/SebastianAment/CovarianceFunctions.jl



Thank you for listening!

Sebastian Ament   and   Carla Gomes



First-Order Optimization

Optimize objective 
along scaled 

gradient direction

Update input

Evaluate 
objective 

function and 
its gradient

locally optimizes a function by



Focus of Our Work

• Use iterative solvers based on 𝑂 𝑛!𝑑 MVM
• Does not have low-data restriction 
• Allows easy combining of value and derivative observations

• Increase scope of structured representations
• Automatic derivation of structure for vast class of kernels
• Structured Hessian kernel representations

• First-order Bayesian optimization

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



Combining Orders

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

Vertical Scaling k(x,y) = f(x)h(x,y)f(y) for a scalar-valued f , then

hxk(x,y) =hx[f(x)h(x,y)]f(y)

= [f(x)hx[h](x,y)

+ h[f ](x)h(x,y)

+rx[h](x,y)⌦r[f ](x)

+r[f ](x)⌦rx[h](x,y)] f(y)

[hxr
>
y k](x,y) = [f(x)[hxr

>
y h](x,y)

+ h[f ](x)[r>
y h](x,y)

+G[h](x,y)⌦r[f ](x)

+r[f ](x)⌦G[h](x,y)] f(y)

+ hx[f(x)h(x,y)]r
>
y f(y)

[hxh
>
y k](x,y) = [f(x)[hxh

>
y h](x,y)

+ h[f ](x)[h>
y h](x,y)

+G[h](x,y)⌦r[f ](x)r>[f ](y)

+r[f ](x)r>[f ](y)⌦G[h](x,y)] f(y)

+ hx[f(x)h(x,y)]h
>
y f(y)

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in O(d2) operations.

Warping k(x,y) = h(u(x),u(y)),

hxk(x,y) = (J⌦ J)>[u](x) [hxh](u(x),u(y))

[hxr
>
y k](x,y) = (J⌦ J)>[u](x) [hxr

>
y h](u(x),u(y)) J[u](y)

[hxh
>
y k](x,y) = (J⌦ J)>[u](x) [hxh

>
y h](u(x),u(y)) (J⌦ J)[u](y).

We therefore see that KH = hxh
>
y k(X) = DJ[hxh

>
y h](X)DJ, where DJ is the block-diagonal matrix whose i

th block is equal to
(J ⌦ J)[u](xi) = J[u](xi) ⌦ J[u](xi). Note that for linearly warped kernels for which u(x) = Ux, where U 2 Rr⇥d, we have
(J⌦ J)[u](xi) = U⌦U so that we can multiply with the kernel matrix K

H in O(n2
r
2 + n(d2r+ r

2
d)). The complexity is due to the

following property of Kronecker product:
(U⌦U)vec(H) = vec(UHU

>),

which can be computed in O(d2r + r
2
d) for every of the n Hessian observations.

D. Combining Derivative Orders
Combining observations of the function values and its first and second derivatives is straightforward via the following block-structured
kernel: 2

4
k ry[k]

>
hy[k]

>

rx[k] G[k] Jx[hy[k]]
hx[k] Jy[hx[k]] H[k]

3

5 .

If all constituent blocks permit a fast multiply - O(d) for gradient and O(d2) for Hessian-related blocks - the entire structure permits a
O(d2) multiply, even though the naïve cost is O(d4). If only value and gradient observations are required, only the top-left two-by-two
block is necessary, which can be carried out in O(d) in the structured case and which we implemented as the ValueGradientKernel.

Discussion Recall that the computational complexity of multiplying with the gradient and Hessian kernel matrices is O(n2
d) and

O(n2
d
2), respectively. Thus, the gradient-based method can only make a factor of O(

p
d) more observations than the Hessian-based

method for the same computational cost. Therefore, it is computationally easier to incorporate additional information at a single point
than it is to combine first-order information at several points. Since the Hessian contains d times more pieces of information than the
gradient, the former could be more efficient in certain scenarios. We compare the scaling of the multiplications arising from first- and
second-order data experimentally in Section 4.1 but leave a comprehensive comparison of first-order and second-order BO to future work.
The main goal of the current work is to enable such investigations in the first place by providing the required theoretical advances and
practical infrastructure, see CovarianceFunctions.jl.

• We can combine value, gradient, and Hessian observations
• Include the relevant cross covariances 

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, to appear in ICML 2022



Gradient and Hessian MVM Benchmarks
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Composite Kernels MVM Benchmarks

10 0 10 1 10 2 10 3 
10 0 

10 1 

10 2 

10 3 

10 4 

10 5 

10 6 

n

d

10 0 10 1 10 2 10 3 
10 0 

10 1 

10 2 

10 3 

10 4 

10 5 

10 6 

n
d

10 0 10 1 10 2 10 3 10 4 10 5 10 6 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

10 0 

d

tim
e 

(s
)

10 0 10 1 10 2 10 3 
10 0 

10 1 

10 2 

10 3 

10 4 

10 5 

10 6 

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

n

d

Scaling Naïve Fast
Ex

po
ne

nt
ia

l D
ot

N
eu

ra
l N

et
w

or
k

time 
(log10 s)

10 0 10 1 10 2 10 3 10 4 10 5 10 6 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

10 0 

fast
naive
O(d)
O(d²)

dimensions

tim
e 

(s
)

MVM with RQ

10 0 10 1 10 2 10 3 
10 0 

10 1 

10 2 

10 3 

10 4 

10 5 

10 6 

n

d

10 0 10 1 10 2 10 3 
10 0 

10 1 

10 2 

10 3 

10 4 

10 5 

10 6 

n

d

10 0 10 1 10 2 10 3 10 4 10 5 10 6 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

10 0 

d

tim
e 

(s
)

10 0 10 1 10 2 10 3 10 4 10 5 10 6 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

10 0 

fast
naive
O(d)
O(d²)

dimensions

tim
e 

(s
)

MVM with RQ



Scope Comparison to Prior Work

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
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Figure 3: Benchmarks of matrix-vector multiplications with the gradient kernel matrices using the exponentiated dot-product
(top) and neural network kernels (bottom). Compared to the performance of the rational quadratic kernel in Figure 2, the
results for the composite neural network kernel are virtually indistinguishable and also exhibit the fast O(d) scaling.

Figure 4: Time to first MVM of GPyTorch, D-SKIP, and
our work for RBF gradient kernel matrices with n = 1024.

Table 1: MVM complexity with select gradient kernel matrices.
SM = spectral mixture kernel, NN = neural network kernel.
⇤See the discussion on the right about D-SKIP’s complexity.

RBF SM NN

GPFlow / SKLearn 7 7 7
GPyTorch O(n2d2) 7 7

(Eriksson et al., 2018) O(nd2)⇤ 7 7
(De Roos et al., 2021) O(n2d) 7 7

Our work O(n2d) O(n2d) O(n2d)

Eriksson et al. (2018)’s D-SKIP D-SKIP is an approxi-
mate method and requires that the kernel can be expressed
as a separable product and further, that the resulting con-
stituent kernel matrices have a low rank. In contrast our
method is mathematically exact and applies to a large class
of kernels without restriction. D-SKIP needs an upfront
cost of O(d2(n + m logm + r3n log d)), followed by a
matrix-vector multiplication (MVM) cost of O(dr2n) for
constituent kernel matrices of rank r and m inducing points
per dimension. For a constant rank r, D-SKIP’s MVM
scales both linearly in n and d, while the method proposed
herein scales quadratically in n. See Figure 4 for a compari-
son of D-SKIP’s real-world performance, where D-SKIP’s
MVM scales linearly in d, but the required pre-processing
scales quadratically in d and dominates the total runtime.
Note that D-SKIP’s implementation is restricted to d > 4,
since D-SKI is faster in this regime. For d  32, D-SKIP’s
pure MVM times are faster than our method, whose runtime
grows sublinearly until d = 64 because it takes advantage of
vector registers and SIMD instructions. Notably, the linear
extrapolation of D-SKIP’s pure MVM times without pre-
processing is within a small factor (< 2) of the timings of
our work for d � 64, implying that if D-SKIP were applied
to higher dimensions, the pure MVM times of both meth-
ods would be comparable for a moderately large number of
observations (n = 1024). Figure 6 in Section E shows that
D-SKIP is approximate and looses accuracy as d increases,
while our method is accurate to machine precision.


