Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation

Sebastian Ament and Carla Gomes

is designed to *globally* optimize functions that are

is designed to *globally* optimize functions that are

• expensive to evaluate

is designed to *globally* optimize functions that are

• expensive to evaluate

non-convex

is designed to *globally* optimize functions that are

• expensive to evaluate

non-convex

black boxes

The Bayesian Optimization Loop

The Bayesian Optimization Loop

- n number of evaluations of the objective
- d number of parameters of the objective

- n number of evaluations of the objective
- d number of parameters of the objective
- Including gradient information into a GP surrogate involves
 - nd by nd matrices

- n number of evaluations of the objective
- d number of parameters of the objective
- Including gradient information into a GP surrogate involves
 - nd by nd matrices
 - $O(n^2d^2)$ operations for matrix-vector multiplications (MVMs)

- n number of evaluations of the objective
- d number of parameters of the objective
- Including gradient information into a GP surrogate involves
 - nd by nd matrices
 - $O(n^2d^2)$ operations for matrix-vector multiplications (MVMs)
 - $O(n^3d^3)$ operations for matrix inversion

- n number of evaluations of the objective
- d number of parameters of the objective
- Including gradient information into a GP surrogate involves
 - nd by nd matrices
 - $O(n^2d^2)$ operations for matrix-vector multiplications (MVMs)
 - $O(n^3d^3)$ operations for matrix inversion
- Our work reduces this to $O(n^2d)$ for MVMs

- n number of evaluations of the objective
- d number of parameters of the objective
- Including gradient information into a GP surrogate involves
 - nd by nd matrices
 - $O(n^2d^2)$ operations for matrix-vector multiplications (MVMs)
 - $O(n^3d^3)$ operations for matrix inversion
- Our work reduces this to $O(n^2d)$ for MVMs
- Use iterative solvers for solves

- k(x, y) covariance function of two inputs x and y
- Covariance function of *gradients* is given by G[k], where

$$G_{ij} = \partial_{x_i} \partial_{y_j}$$

- G[k] is d by d
- We show how to compute MVMs with G[k] in O(d).

• If we have an O(d) MVM with G[k], we have an MVM with K^{∇} in $O(n^2d)$.

• K^{∇} – covariance matrix between gradients of *all* points (nd by nd)

$$K_{ij}^{\nabla} = G[k](x_i, y_j)$$

Many kernel can be written as

$$k(\mathbf{x}, \mathbf{y}) = f(\text{proto}(\mathbf{x}, \mathbf{y})),$$

where proto(
$$\mathbf{x}, \mathbf{y}$$
) = ($\mathbf{r} \cdot \mathbf{r}$), ($\mathbf{c} \cdot \mathbf{r}$), or ($\mathbf{x} \cdot \mathbf{y}$)

For these choices, we have

$$\mathbf{G}[\mathbf{r} \cdot \mathbf{r}] = -\mathbf{I}_d$$
, $\mathbf{G}[\mathbf{c} \cdot \mathbf{r}] = \mathbf{0}_{d \times d}$, and $\mathbf{G}[\mathbf{x} \cdot \mathbf{y}] = \mathbf{I}_d$.

Many kernel can be written as

$$k(\mathbf{x}, \mathbf{y}) = f(\text{proto}(\mathbf{x}, \mathbf{y})),$$

where $\text{proto}(\mathbf{x}, \mathbf{y}) = (\mathbf{r} \cdot \mathbf{r}), \ (\mathbf{c} \cdot \mathbf{r}), \ \text{or} \ (\mathbf{x} \cdot \mathbf{y})$

For these choices, we have

$$\mathbf{G}[\mathbf{r} \cdot \mathbf{r}] = -\mathbf{I}_d, \ \mathbf{G}[\mathbf{c} \cdot \mathbf{r}] = \mathbf{0}_{d \times d}, \ \text{and} \ \mathbf{G}[\mathbf{x} \cdot \mathbf{y}] = \mathbf{I}_d.$$
 $\longrightarrow O(d)$ MVM with G

A Chain Rule Many kernels can be expressed as $k = f \circ g$ where g is scalar-valued. For these types of kernels, we have

$$\mathbf{G}[f \circ g] = (f' \circ g) \ \mathbf{G}[g] + (f'' \circ g) \ \nabla_{\mathbf{x}}[g] \nabla_{\mathbf{y}}[g]^{\top}.$$

A Chain Rule Many kernels can be expressed as $k = f \circ g$ where g is scalar-valued. For these types of kernels, we have

$$\mathbf{G}[f \circ g] = (f' \circ g) \ \mathbf{G}[g] + (f'' \circ g) \ \nabla_{\mathbf{x}}[g] \nabla_{\mathbf{y}}[g]^{\top}.$$

 \longrightarrow O(d) MVM with G

Sums and Products of kernels: $k = \prod_{i=1}^{r} k_i$

$$\mathbf{G}[k] = \sum_{i=1}^{\tau} \mathbf{G}[k_i] p_i + \mathbf{J}_{\mathbf{x}}[\mathbf{k}]^{\top} \mathbf{P} \mathbf{J}_{\mathbf{y}}[\mathbf{k}],$$

Direct sums and products:

$$[\mathbf{G}k_i]_{ii} = [\partial_{x_i}\partial_{y_i}k_i]\prod_{j\neq i}k_j, \text{ and } [\mathbf{J_xk}]_{ii} = \partial_{x_i}k_i.$$

$$\longrightarrow O(d) \text{ MVM with } G$$

And more

Rescaling
$$\mathbf{G}[k](\mathbf{x}, \mathbf{y}) = f(\mathbf{x})\mathbf{G}[h](\mathbf{x}, \mathbf{y})f(\mathbf{y}) + \\ \nabla_{\mathbf{x}} \begin{bmatrix} f(\mathbf{x}) & k(\mathbf{x}, \mathbf{y}) \end{bmatrix} \begin{bmatrix} h(\mathbf{x}, \mathbf{y}) & f(\mathbf{y}) \\ f(\mathbf{x}) & 0 \end{bmatrix} \nabla_{\mathbf{y}} \begin{bmatrix} f(\mathbf{y}) & k(\mathbf{x}, \mathbf{y}) \end{bmatrix}^{\top}$$

$$\mathbf{K}^{\nabla} = \operatorname{diag}(\mathbf{J}[\mathbf{u}](\mathbf{X}))^{\top} \mathbf{H}^{\nabla} \operatorname{diag}(\mathbf{J}[\mathbf{u}](\mathbf{X})).$$

Figure 1: Computational graphs of composite kernels whose gradient kernel matrix can be expressed with the data-sparse structured expressions derived in Section 3.2. Inside a node, k and h refer to kernels computed by previous nodes.

 \longrightarrow O(d) MVM with G

Yet more: Hessian observations

 $O(d^4)$ MVM with H

Yet more: Hessian observations

C. Hessian Structure

Note that for arbitrary vectors \mathbf{a} , \mathbf{b} , not necessarily of the same length, $\mathbf{a} \otimes \mathbf{b} = \text{vec}(\mathbf{b}\mathbf{a}^{\top})$. This will come in handy to simplify certain expressions in the following.

Dot-Product Kernels First, note that

$$\nabla_{\mathbf{y}}^{\top} \text{vec}(\mathbf{y}\mathbf{y}^{\top}) = \mathbf{I}_d \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{I}_d \qquad \nabla_{\mathbf{y}} \nabla_{\mathbf{y}}^{\top} \text{vec}(\mathbf{y}\mathbf{y}^{\top}) = \mathbf{S}_{dd} + \mathbf{I}_{d^2}.$$

Where \mathbf{S}_{dd} is a "shuffle" matrix such that $\mathbf{S}_{dd} \text{vec}(\mathbf{A}) = \text{vec}(\mathbf{A}^{\top})$, and for square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times m}$, the Kronecker sum is defined as $\mathbf{A} \oplus \mathbf{B} \stackrel{\text{def}}{=} \mathbf{A} \otimes \mathbf{I}_m + \mathbf{I}_n \otimes \mathbf{B}$. Then for dot-product kernels, we have

$$[\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = f''(r)\text{vec}(\mathbf{y}\mathbf{y}^{\top})$$

$$[\mathbf{h}_{\mathbf{x}} \nabla_{\mathbf{y}}^{\top} k](\mathbf{x}, \mathbf{y}) = f''(r) (\mathbf{I}_d \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{I}_d) + f'''(r) \text{vec}(\mathbf{y} \mathbf{y}^{\top}) \mathbf{x}^{\top}$$

$$[\mathbf{h}_{\mathbf{y}}^{\top}\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = (\mathbf{I}_{d^2} + \mathbf{S}_{dd})[f''(r)\mathbf{I}_{d^2} + f'''(r)(\mathbf{y}\mathbf{x}^{\top} \oplus \mathbf{y}\mathbf{x}^{\top})] + f''''(r)\text{vec}(\mathbf{y}\mathbf{y}^{\top})\text{vec}(\mathbf{x}\mathbf{x}^{\top})^{\top}$$

Isotropic Kernels Then for isotropic product kernels with $r = ||\mathbf{r}||_2^2$, we have

$$\mathbf{J}_{\mathbf{x}} \text{vec}(\mathbf{r} \mathbf{r}^{\top}) = \mathbf{I}_{d} \otimes \mathbf{r} + \mathbf{r} \otimes \mathbf{I}_{d} \qquad \mathbf{H}_{\mathbf{y}} \text{vec}(\mathbf{r} \mathbf{r}^{\top}) = \mathbf{S}_{dd} + \mathbf{I}_{d^{2}}$$

Which implies

$$[\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = f'(r)\mathrm{vec}(\mathbf{I}_d) + f''(r)\mathrm{vec}(\mathbf{r}\mathbf{r}^{\top}).$$

 $O(d^4)$ MVM with H

$$[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) = -f''(r)(\mathbf{I}_d\otimes\mathbf{r} + \mathbf{r}\otimes\mathbf{I}_d) - [f''(r)\mathrm{vec}(\mathbf{I}_d) + f'''(r)\mathrm{vec}(\mathbf{rr}^{\top})]\mathbf{r}^{\top}$$

$$\begin{split} \mathbf{h}_{\mathbf{y}}^{\top}\mathbf{h}_{\mathbf{x}}k(\mathbf{x},\mathbf{y}) &= (\mathbf{I}_{d^2} + \mathbf{S}_{dd})[f''(r)\mathbf{I}_{d^2} + f'''(r)(\mathbf{r}\mathbf{r}^{\top} \oplus \mathbf{r}\mathbf{r}^{\top})] \\ &+ \begin{bmatrix} \operatorname{vec}(\mathbf{I}_d) & \operatorname{vec}(\mathbf{r}\mathbf{r}^{\top}) \end{bmatrix} \begin{bmatrix} f''(r) & f'''(r) \\ f''''(r) & f''''(r) \end{bmatrix} \begin{bmatrix} \operatorname{vec}(\mathbf{I}_d) & \operatorname{vec}(\mathbf{r}\mathbf{r}^{\top}) \end{bmatrix}^{\top}. \end{split}$$

A Chain Rule $k(\mathbf{x}, \mathbf{y}) = (f \circ g)(\mathbf{x}, \mathbf{y}).$

$$[\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = f'(r)\mathbf{h}_{\mathbf{x}}[g] + f''(r)\text{vec}(\nabla_{\mathbf{x}}g\nabla_{\mathbf{x}}g^{\top}).$$

$$[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) = f''(r)(\mathbf{H}_{\mathbf{x}}q\otimes\nabla_{\mathbf{y}}q + \nabla_{\mathbf{y}}q\otimes\mathbf{H}_{\mathbf{x}}q) + [f''(r)\mathbf{h}_{\mathbf{x}}[q]) + f'''(r)\mathrm{vec}(\nabla_{\mathbf{x}}q\nabla_{\mathbf{x}}q^{\top})]\nabla_{\mathbf{y}}q^{\top}.$$

$$\begin{split} \mathbf{h}_{\mathbf{x}} \mathbf{h}_{\mathbf{y}}^{\top} k(\mathbf{x}, \mathbf{y}) &= (\mathbf{I}_{d^2} + \mathbf{S}_{dd}) [f''(r) \mathbf{I}_{d^2} + f'''(r) (\nabla_{\mathbf{x}} g \nabla_{\mathbf{x}} g^{\top} \oplus \nabla_{\mathbf{y}} g \nabla_{\mathbf{y}} g^{\top})] \\ &+ \begin{bmatrix} \mathbf{h}_{\mathbf{x}} g & \text{vec} (\nabla_{\mathbf{x}} g \nabla_{\mathbf{x}} g^{\top}) \end{bmatrix} \begin{bmatrix} f''(r) & f'''(r) \\ f''''(r) & f''''(r) \end{bmatrix} \begin{bmatrix} \mathbf{h}_{\mathbf{y}} g & \text{vec} (\nabla_{\mathbf{y}} g \nabla_{\mathbf{y}} g^{\top}) \end{bmatrix}^{\top}. \end{split}$$

Vertical Scaling $k(\mathbf{x}, \mathbf{y}) = f(\mathbf{x})h(\mathbf{x}, \mathbf{y})f(\mathbf{y})$ for a scalar-valued f, then

$$\begin{split} \mathbf{h}_{\mathbf{x}}k(\mathbf{x},\mathbf{y}) &= \mathbf{h}_{\mathbf{x}}[f(\mathbf{x})h(\mathbf{x},\mathbf{y})]f(\mathbf{y}) \\ &= [f(\mathbf{x})\mathbf{h}_{\mathbf{x}}[h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{h}[f](\mathbf{x})h(\mathbf{x},\mathbf{y}) \\ &+ \nabla_{\mathbf{x}}[h](\mathbf{x},\mathbf{y}) \otimes \nabla[f](\mathbf{x}) \\ &+ \nabla_{\mathbf{x}}[h](\mathbf{x},\mathbf{y}) \otimes \nabla_{\mathbf{x}}[h](\mathbf{x},\mathbf{y})] f(\mathbf{y}) \\ &[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= [f(\mathbf{x})[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{h}[f](\mathbf{x})[\nabla_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{G}[h](\mathbf{x},\mathbf{y}) \otimes \nabla[f](\mathbf{x}) \\ &+ \nabla[f](\mathbf{x}) \otimes \mathbf{G}[h](\mathbf{x},\mathbf{y})] f(\mathbf{y}) \\ &+ \mathbf{h}_{\mathbf{x}}[f(\mathbf{x})h(\mathbf{x},\mathbf{y})]\nabla_{\mathbf{y}}^{\top}f(\mathbf{y}) \\ &[\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= [f(\mathbf{x})[\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{h}[f](\mathbf{x})[\mathbf{h}_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{G}[h](\mathbf{x},\mathbf{y}) \otimes \nabla[f](\mathbf{x})\nabla^{\top}[f](\mathbf{y}) \\ &+ \nabla[f](\mathbf{x})\nabla^{\top}[f](\mathbf{y}) \otimes \mathbf{G}[h](\mathbf{x},\mathbf{y})] f(\mathbf{y}) \\ &+ \mathbf{h}_{\mathbf{x}}[f(\mathbf{x})h(\mathbf{x},\mathbf{y})]\mathbf{h}_{\mathbf{y}}^{\top}f(\mathbf{y}) \end{split}$$

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in $\mathcal{O}(d^2)$ operations.

Warping $k(\mathbf{x}, \mathbf{y}) = h(\mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{y})),$

$$\begin{split} \mathbf{h}_{\mathbf{x}}k(\mathbf{x},\mathbf{y}) &= (\mathbf{J}\otimes\mathbf{J})^{\top}[\mathbf{u}](\mathbf{x})\ [\mathbf{h}_{\mathbf{x}}h](\mathbf{u}(\mathbf{x}),\mathbf{u}(\mathbf{y})) \\ [\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= (\mathbf{J}\otimes\mathbf{J})^{\top}[\mathbf{u}](\mathbf{x})\ [\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}h](\mathbf{u}(\mathbf{x}),\mathbf{u}(\mathbf{y}))\ \mathbf{J}[\mathbf{u}](\mathbf{y}) \\ [\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= (\mathbf{J}\otimes\mathbf{J})^{\top}[\mathbf{u}](\mathbf{x})\ [\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}h](\mathbf{u}(\mathbf{x}),\mathbf{u}(\mathbf{y}))\ (\mathbf{J}\otimes\mathbf{J})[\mathbf{u}](\mathbf{y}). \end{split}$$

We therefore see that $\mathbf{K}^{\mathbf{H}} = \mathbf{h}_{\mathbf{x}} \mathbf{h}_{\mathbf{y}}^{\top} k(\mathbf{X}) = \mathbf{D}_{\mathbf{J}} [\mathbf{h}_{\mathbf{x}} \mathbf{h}_{\mathbf{y}}^{\top} h](\mathbf{X}) \mathbf{D}_{\mathbf{J}}$, where $\mathbf{D}_{\mathbf{J}}$ is the block-diagonal matrix whose i^{th} block is equal to $(\mathbf{J} \otimes \mathbf{J})[\mathbf{u}](\mathbf{x}_i) = \mathbf{J}[\mathbf{u}](\mathbf{x}_i) \otimes \mathbf{J}[\mathbf{u}](\mathbf{x}_i)$. Note that for linearly warped kernels for which $\mathbf{u}(\mathbf{x}) = \mathbf{U}\mathbf{x}$, where $\mathbf{U} \in \mathbb{R}^{r \times d}$, we have $(\mathbf{J} \otimes \mathbf{J})[\mathbf{u}](\mathbf{x}_i) = \mathbf{U} \otimes \mathbf{U}$ so that we can multiply with the kernel matrix $\mathbf{K}^{\mathbf{H}}$ in $\mathcal{O}(n^2r^2 + n(d^2r + r^2d))$. The complexity is due to the following property of Kronecker product:

$$(\mathbf{U} \otimes \mathbf{U}) \operatorname{vec}(\mathbf{H}) = \operatorname{vec}(\mathbf{U} \mathbf{H} \mathbf{U}^{\top})$$

which can be computed in $\mathcal{O}(d^2r + r^2d)$ for every of the *n* Hessian observations.

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Yet more: Hessian observations

C. Hessian Structure

Note that for arbitrary vectors \mathbf{a} , \mathbf{b} , not necessarily of the same length, $\mathbf{a} \otimes \mathbf{b} = \text{vec}(\mathbf{b}\mathbf{a}^{\top})$. This will come in handy to simplify certain expressions in the following.

Dot-Product Kernels First, note that

$$\nabla_{\mathbf{y}}^{\top} \text{vec}(\mathbf{y}\mathbf{y}^{\top}) = \mathbf{I}_d \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{I}_d \qquad \nabla_{\mathbf{y}} \nabla_{\mathbf{y}}^{\top} \text{vec}(\mathbf{y}\mathbf{y}^{\top}) = \mathbf{S}_{dd} + \mathbf{I}_{d^2}.$$

Where \mathbf{S}_{dd} is a "shuffle" matrix such that $\mathbf{S}_{dd} \text{vec}(\mathbf{A}) = \text{vec}(\mathbf{A}^{\top})$, and for square matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times m}$, the Kronecker sum is defined as $\mathbf{A} \oplus \mathbf{B} \stackrel{\text{def}}{=} \mathbf{A} \otimes \mathbf{I}_m + \mathbf{I}_n \otimes \mathbf{B}$. Then for dot-product kernels, we have

$$[\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = f''(r)\text{vec}(\mathbf{y}\mathbf{y}^{\top})$$

$$[\mathbf{h}_{\mathbf{x}} \nabla_{\mathbf{y}}^{\top} k](\mathbf{x}, \mathbf{y}) = f''(r)(\mathbf{I}_d \otimes \mathbf{y} + \mathbf{y} \otimes \mathbf{I}_d) + f'''(r) \text{vec}(\mathbf{y} \mathbf{y}^{\top}) \mathbf{x}^{\top}$$

$$[\mathbf{h}_{\mathbf{y}}^{\top}\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = (\mathbf{I}_{d^2} + \mathbf{S}_{dd})[f''(r)\mathbf{I}_{d^2} + f'''(r)(\mathbf{y}\mathbf{x}^{\top} \oplus \mathbf{y}\mathbf{x}^{\top})] + f''''(r)\text{vec}(\mathbf{y}\mathbf{y}^{\top})\text{vec}(\mathbf{x}\mathbf{x}^{\top})^{\top}$$

Isotropic Kernels Then for isotropic product kernels with $r = ||\mathbf{r}||_2^2$, we have

$$\mathbf{J}_{\mathbf{x}} \text{vec}(\mathbf{r} \mathbf{r}^{\top}) = \mathbf{I}_{d} \otimes \mathbf{r} + \mathbf{r} \otimes \mathbf{I}_{d} \qquad \mathbf{H}_{\mathbf{y}} \text{vec}(\mathbf{r} \mathbf{r}^{\top}) = \mathbf{S}_{dd} + \mathbf{I}_{d^{2}}$$

Which implies

$$[\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = f'(r)\mathrm{vec}(\mathbf{I}_d) + f''(r)\mathrm{vec}(\mathbf{rr}^{\top}).$$

 $O(d^2)$ MVM with H

$$[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) = -f''(r)(\mathbf{I}_d\otimes\mathbf{r} + \mathbf{r}\otimes\mathbf{I}_d) - [f''(r)\text{vec}(\mathbf{I}_d) + f'''(r)\text{vec}(\mathbf{r}\mathbf{r}^{\top})]\mathbf{r}^{\top}$$

$$\begin{split} \mathbf{h}_{\mathbf{y}}^{\top}\mathbf{h}_{\mathbf{x}}k(\mathbf{x},\mathbf{y}) &= (\mathbf{I}_{d^2} + \mathbf{S}_{dd})[f''(r)\mathbf{I}_{d^2} + f'''(r)(\mathbf{r}\mathbf{r}^{\top} \oplus \mathbf{r}\mathbf{r}^{\top})] \\ &+ \begin{bmatrix} \operatorname{vec}(\mathbf{I}_d) & \operatorname{vec}(\mathbf{r}\mathbf{r}^{\top}) \end{bmatrix} \begin{bmatrix} f''(r) & f'''(r) \\ f''''(r) & f''''(r) \end{bmatrix} \begin{bmatrix} \operatorname{vec}(\mathbf{I}_d) & \operatorname{vec}(\mathbf{r}\mathbf{r}^{\top}) \end{bmatrix}^{\top}. \end{split}$$

A Chain Rule $k(\mathbf{x}, \mathbf{y}) = (f \circ g)(\mathbf{x}, \mathbf{y}).$

$$[\mathbf{h}_{\mathbf{x}}k](\mathbf{x},\mathbf{y}) = f'(r)\mathbf{h}_{\mathbf{x}}[g] + f''(r)\text{vec}(\nabla_{\mathbf{x}}g\nabla_{\mathbf{x}}g^{\top}).$$

$$[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) = f''(r)(\mathbf{H}_{\mathbf{x}}g\otimes\nabla_{\mathbf{y}}g + \nabla_{\mathbf{y}}g\otimes\mathbf{H}_{\mathbf{x}}g) + [f''(r)\mathbf{h}_{\mathbf{x}}[g]) + f'''(r)\mathrm{vec}(\nabla_{\mathbf{x}}g\nabla_{\mathbf{x}}g^{\top})]\nabla_{\mathbf{y}}g^{\top}.$$

$$\begin{split} \mathbf{h}_{\mathbf{x}} \mathbf{h}_{\mathbf{y}}^{\top} k(\mathbf{x}, \mathbf{y}) &= (\mathbf{I}_{d^2} + \mathbf{S}_{dd}) [f''(r) \mathbf{I}_{d^2} + f'''(r) (\nabla_{\mathbf{x}} g \nabla_{\mathbf{x}} g^{\top} \oplus \nabla_{\mathbf{y}} g \nabla_{\mathbf{y}} g^{\top})] \\ &+ \left[\mathbf{h}_{\mathbf{x}} g \quad \text{vec} (\nabla_{\mathbf{x}} g \nabla_{\mathbf{x}} g^{\top}) \right] \begin{bmatrix} f''(r) & f'''(r) \\ f'''(r) & f''''(r) \end{bmatrix} \left[\mathbf{h}_{\mathbf{y}} g \quad \text{vec} (\nabla_{\mathbf{y}} g \nabla_{\mathbf{y}} g^{\top}) \right]^{\top}. \end{split}$$

Vertical Scaling $k(\mathbf{x}, \mathbf{y}) = f(\mathbf{x})h(\mathbf{x}, \mathbf{y})f(\mathbf{y})$ for a scalar-valued f, then

$$\begin{split} \mathbf{h}_{\mathbf{x}}k(\mathbf{x},\mathbf{y}) &= \mathbf{h}_{\mathbf{x}}[f(\mathbf{x})h(\mathbf{x},\mathbf{y})]f(\mathbf{y}) \\ &= [f(\mathbf{x})\mathbf{h}_{\mathbf{x}}[h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{h}[f](\mathbf{x})h(\mathbf{x},\mathbf{y}) \\ &+ \nabla_{\mathbf{x}}[h](\mathbf{x},\mathbf{y}) \otimes \nabla[f](\mathbf{x}) \\ &+ \nabla_{\mathbf{x}}[h](\mathbf{x},\mathbf{y}) \otimes \nabla_{\mathbf{x}}[h](\mathbf{x},\mathbf{y})] f(\mathbf{y}) \\ [\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= [f(\mathbf{x})[\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{h}[f](\mathbf{x})[\nabla_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{G}[h](\mathbf{x},\mathbf{y}) \otimes \nabla[f](\mathbf{x}) \\ &+ \nabla[f](\mathbf{x}) \otimes \mathbf{G}[h](\mathbf{x},\mathbf{y})] f(\mathbf{y}) \\ &+ \mathbf{h}_{\mathbf{x}}[f(\mathbf{x})h(\mathbf{x},\mathbf{y})]\nabla_{\mathbf{y}}^{\top}f(\mathbf{y}) \\ [\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= [f(\mathbf{x})[\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{h}[f](\mathbf{x})[\mathbf{h}_{\mathbf{y}}^{\top}h](\mathbf{x},\mathbf{y}) \\ &+ \mathbf{G}[h](\mathbf{x},\mathbf{y}) \otimes \nabla[f](\mathbf{x})\nabla^{\top}[f](\mathbf{y}) \\ &+ \nabla[f](\mathbf{x})\nabla^{\top}[f](\mathbf{y}) \otimes \mathbf{G}[h](\mathbf{x},\mathbf{y})] f(\mathbf{y}) \\ &+ \mathbf{h}_{\mathbf{x}}[f(\mathbf{x})h(\mathbf{x},\mathbf{y})]\mathbf{h}_{\mathbf{y}}^{\top}f(\mathbf{y}) \end{split}$$

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in $\mathcal{O}(d^2)$ operations.

Warping $k(\mathbf{x}, \mathbf{y}) = h(\mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{y})),$

$$\begin{split} \mathbf{h}_{\mathbf{x}}k(\mathbf{x},\mathbf{y}) &= (\mathbf{J}\otimes\mathbf{J})^{\top}[\mathbf{u}](\mathbf{x})\ [\mathbf{h}_{\mathbf{x}}h](\mathbf{u}(\mathbf{x}),\mathbf{u}(\mathbf{y})) \\ [\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= (\mathbf{J}\otimes\mathbf{J})^{\top}[\mathbf{u}](\mathbf{x})\ [\mathbf{h}_{\mathbf{x}}\nabla_{\mathbf{y}}^{\top}h](\mathbf{u}(\mathbf{x}),\mathbf{u}(\mathbf{y}))\ \mathbf{J}[\mathbf{u}](\mathbf{y}) \\ [\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}k](\mathbf{x},\mathbf{y}) &= (\mathbf{J}\otimes\mathbf{J})^{\top}[\mathbf{u}](\mathbf{x})\ [\mathbf{h}_{\mathbf{x}}\mathbf{h}_{\mathbf{y}}^{\top}h](\mathbf{u}(\mathbf{x}),\mathbf{u}(\mathbf{y}))\ (\mathbf{J}\otimes\mathbf{J})[\mathbf{u}](\mathbf{y}). \end{split}$$

We therefore see that $\mathbf{K}^{\mathbf{H}} = \mathbf{h}_{\mathbf{x}} \mathbf{h}_{\mathbf{y}}^{\top} k(\mathbf{X}) = \mathbf{D}_{\mathbf{J}} [\mathbf{h}_{\mathbf{x}} \mathbf{h}_{\mathbf{y}}^{\top} h](\mathbf{X}) \mathbf{D}_{\mathbf{J}}$, where $\mathbf{D}_{\mathbf{J}}$ is the block-diagonal matrix whose i^{th} block is equal to $(\mathbf{J} \otimes \mathbf{J})[\mathbf{u}](\mathbf{x}_i) = \mathbf{J}[\mathbf{u}](\mathbf{x}_i) \otimes \mathbf{J}[\mathbf{u}](\mathbf{x}_i)$. Note that for linearly warped kernels for which $\mathbf{u}(\mathbf{x}) = \mathbf{U}\mathbf{x}$, where $\mathbf{U} \in \mathbb{R}^{r \times d}$, we have $(\mathbf{J} \otimes \mathbf{J})[\mathbf{u}](\mathbf{x}_i) = \mathbf{U} \otimes \mathbf{U}$ so that we can multiply with the kernel matrix $\mathbf{K}^{\mathbf{H}}$ in $\mathcal{O}(n^2r^2 + n(d^2r + r^2d))$. The complexity is due to the following property of Kronecker product:

$$(\mathbf{U} \otimes \mathbf{U}) \operatorname{vec}(\mathbf{H}) = \operatorname{vec}(\mathbf{U} \mathbf{H} \mathbf{U}^{\top})$$

which can be computed in $\mathcal{O}(d^2r + r^2d)$ for every of the *n* Hessian observations.

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Performance Comparison to Prior Work

Figure 4: Time to first MVM of GPyTorch, D-SKIP, and our work for RBF gradient kernel matrices with n=1024.

Accuracy Comparison to Prior Work

D-SKIP from "Scaling Gaussian process regression with derivatives." Eriksson et al. NeurIPS 2018.

Bayesian Optimization Benchmarks

Comparing against

- Random sampling
- Convex optimization (L-BFGS)
- Convex optimization with restarts (L-BFGS-R)
- Bayesian Optimization (BO)
- BO with quadratic mixture kernel (BO-Q)
- First-order BO (FOBO)
- FOBO with quadratic mixture kernel (FOBO-Q)

Proposed / scaled by our work

CovarianceFunctions.jl

Our methods are now available and open source at:

github.com/SebastianAment/CovarianceFunctions.jl

Thank you for listening!

Sebastian Ament and Carla Gomes

First-Order Optimization

locally optimizes a function by

Evaluate objective function and its *gradient*

Optimize objective along scaled gradient direction

Update input

Focus of Our Work

- Use iterative solvers based on $O(n^2d)$ MVM
 - Does not have low-data restriction
 - Allows easy combining of value and derivative observations
- Increase scope of structured representations
 - Automatic derivation of structure for vast class of kernels
 - Structured Hessian kernel representations
- First-order Bayesian optimization

Combining Orders

- We can combine value, gradient, and Hessian observations
- Include the relevant cross covariances

$$\begin{bmatrix} k & \nabla_{\mathbf{y}}[k]^{\top} & \mathbf{h}_{\mathbf{y}}[k]^{\top} \\ \nabla_{\mathbf{x}}[k] & \mathbf{G}[k] & \mathbf{J}_{\mathbf{x}}[\mathbf{h}_{\mathbf{y}}[k]] \\ \mathbf{h}_{\mathbf{x}}[k] & \mathbf{J}_{\mathbf{y}}[\mathbf{h}_{\mathbf{x}}[k]] & \mathbf{H}[k] \end{bmatrix}$$

Gradient and Hessian MVM Benchmarks

Composite Kernels MVM Benchmarks

Scope Comparison to Prior Work

Table 1: MVM complexity with select gradient kernel matrices. SM = spectral mixture kernel, NN = neural network kernel. *See the discussion on the right about D-SKIP's complexity.

	RBF	SM	NN
GPFlow / SKLearn	X	X	X
GPyTorch	$\mathcal{O}(n^2d^2)$	X	X
(Eriksson et al., 2018)	$\mathcal{O}(nd^2)^*$	X	X
(De Roos et al., 2021)	$\mathcal{O}(n^2d)$	X	X
Our work	$\mathcal{O}(n^2d)$	$\mathcal{O}(n^2d)$	$\mathcal{O}(n^2d)$