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The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective
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The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

* Including gradient information into a GP surrogate involves
* nd by nd matrices

« 0(n?*d?) operations for matrix-vector multiplications (MVM:s)
« 0(n3d?) operations for matrix inversion

 Our work reduces this to 0(n?d) for MVMs
e Use iterative solvers for solves
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The Problem: A Large Matrix

* k(x,y) — covariance function of two inputs x and y
* Covariance function of gradients is given by G |k], where

Gif = axian

* G|lk]—-isd by d
* We show how to compute MVMs with G[k] in O(d).
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The Problem: A Large Matrix
* If we have an 0(d) MVM with G[k], we have an MVM with KV in O0(n?d).

KV — covariance matrix between gradients of all points (nd by nd)

Kiz' = G[k](xi»y]')
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The Solution: Structure-Aware AD
Many kernel can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r-r), (c-r), or (x-y)
For these choices, we have

Glr-r| =-1;, Glc-r] =044q, and G|x-y| =14.
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The Solution: Structure-Aware AD

A Chain Rule Many kernels can be expressed as k = fog
where g 1s scalar-valued. For these types of kernels, we have

G[fogl=(f"o9) Glg]+ (f" o g) Vxlg]Vylg] "

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



The Solution: Structure-Aware AD

A Chain Rule Many kernels can be expressed as k = fog
where g 1s scalar-valued. For these types of kernels, we have

G[fogl=(f"o9) Glg]+ (f" o g) Vxlg]Vylg] "

— 0(d) MVM with G

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



The Solution: Structure-Aware AD

Sums and Products of kernels: k = [} k;

Glk] =) Glklp; + I<[k]" P Jy[K],
i=1
Direct sums and products:

J71
— 0(d) MVM with G
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The Solution: Structure-Aware AD

And more
Rescaling Glk](x,y) = f(x)G[h](x,y)f(y) +
Vals00 koon] |3 T v ) ko)
Warping K" = diag(J[u)(X))" HY diag(J[u](X)).
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The Solution: Structure-Aware AD

F(x)E(x,y)f(y) ) sin™! ok e ok f(X)k(XJ)f(YD

(a) Neural Network with f(x) = (x-x +1)7!/? (b) RBF Network with f(x) = e **

(c) Variable Linear Regression (d) Spectral Mixture

Figure 1: Computational graphs of composite kernels whose gradient kernel matrix can be expressed with the data-sparse
structured expressions derived in Section 3.2. Inside a node, k£ and A refer to kernels computed by previous nodes.

— 0(d) MVM with G

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



Yet more: Hessian observations

0(d*) MVM with H

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



Yet more: Hessian observations

C. Hessian Structure

Note that for arbitrary vectors a, b, not necessarily of the same length, a ® b = vec(ba " ). This will come in handy to simplify certain
expressions in the following.

Dot-Product Kernels First, note that
V;vec(ny) =Lieyt+yel VyV;vec(ny) = Saa + I2.

Where Sqq is a "shuffle”" matrix such that Sgqvec(A) = vec(AT), and for square matrices A € R"*™ and B € R™*™, the Kronecker

sum is defined as A & B DN ® I + I, ® B. Then for dot-product kernels, we have

(k] (x, ) = /" (r)vee(yy ).
hyVy Kl(x,y) = f'(NIa @y +y @ L) + " (r)vec(yy )x .
[y hck] (6, ) = (L + Saa) " (1)L + £ () (yx" @ yx )] + " (r)vee(yy vee(xx ) .
Isotropic Kernels Then for isotropic product kernels with 7 = ||r||3, we have

Jxvec(rrT) =L1ir+rel; Hyvec(rrT) = Saa + 1z2.

‘Which implies
BVg K, 3) =~ ()L ® x4+ 1@ L) — [ (r)vee(le) + 1" (r)vec(er e
hy huk(x,y) = (Lz + Saa)[f" () Lez + f” (r)(er"” ®rr")]
. oty [ £ () . (rr T
+ [vec(ld) vec(rr )} ) [VEL(Id) vec(rr )} .
A Chain Rule k(x,y) = (fog)(x,y).
[hyk](x,y) = f'(r)hx[g] + f”(r)vec(vx,(]ngT)~

[hxVy k(x,y) = " (r)(Hxg @ Vyg + Vyg @ Hxg) + [f"(r)hlg)) + £ (r)vec(VxgVxg ") Vyg "

hychy k(x,y) = (L2 + Saa)[f” (1)Lez + ' (r)(VxgVxg ' @ VygVyg )]

+ [hxg vec(ngvng)] U’/’/’((Tr)) ff/(/(/,/((:))] [hyg VEC(VygVygT)JT.

(k] (x, y) = f'(r)vec(La) + f"(r)vee(rr ). 0 (d 4 ) IVI V M W it h H

Vertical Scaling k(x,y) = f(x)h(x,y)f(y) for a scalar-valued f, then

hyk(x,y) =hy[f(x)h(x,¥)]f(¥)
= [f(x)hx[h](x,y)
+h[f](x)h(x,y)
+ Vs h](x,y) ® V[f](x)
+ VI[fI(x) ® Vkl[h](x,y)] £(y)
[ Vy k](x,y) = [f(x)[hx Vy ] (x,y)
+h[f](x)[Vy hl(x,y)
+ G[h)(x,y) @ V[f](x)
+ V[f1(x) ® Gh](x,y)] £(¥)
+hy[f(x)h(x,y)]Vy f(¥)
[hychy K] (x,¥) = [f(x)[hchy A (x,y)
+ h[f](x)[hy h](x,y)
+ G[h(x,y) @ VIV [f](y)
+ VAV ) ® GRI(xy)] f(y)
+ ha[f(x)h(x,y)hy f(y)

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in O(d?) operations.
Warping  k(x,y) = h(u(x), u(y)),

huk(x,y) = (3 © 3) " [u] (%) [hxh] (u(x), u(y))
(hxVy kl(x,y) = (J © 3) " [u](x) [hxVy k) (u(x), u(y)) Iu](y)
[hxhy K](x,y) = (3 ©J) " [u)(x) [hxhy ] (u(x), u(y)) (I @ I)[u(y).

We therefore see that K™ = hxhy k(X) = Dj[hxhy h](X)Dj, where Dy is the block-diagonal matrix whose ™ block is equal to
(J ® J)[u](x:) = J[u](x:) ® J[u](x;). Note that for linearly warped kernels for which u(x) = Ux, where U € R"*?, we have
(J ® J)[u](x:) = U @ U so that we can multiply with the kernel matrix K* in O(n?r? 4 n(d?r + r2d)). The complexity is due to the
following property of Kronecker product:

(U ® U)vec(H) = vec(UHU "),

which can be computed in O(d?r + r2d) for every of the n Hessian observations.
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Performance Comparison to Prior Work
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Figure 4: Time to first MVM of GPyTorch, D-SKIP, and
our work for RBF gradient kernel matrices with n = 1024.



Accuracy Comparison to Prior Work
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Bayesian Optimization Benchmarks

Comparing against
 Random sampling
e Convex optimization (L-BFGS)
* Convex optimization with restarts (L-BFGS-R)
e Bayesian Optimization (=)
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CovarianceFunctions.jl

Our methods are now available and open source at:

github.com/SebastianAment/CovarianceFunctions.jl

eoe M- < [ )] github.com 2 ¢ (©) ﬂ'] + 88

Cornell Student Center  Cornell Essentials ~ Apple  Wikipedia Google Maps ~ Beliebt v Google Translate ~ Prime Video

= README.md 4

Gradient Kernels

When conditioning Gaussian processes on gradient information, it is necessary to work with d x d matrix-
valued gradient kernels, where d is the dimension of the input. Roos et al. first noted that isotropic and
dot product kernels give rise to gradient kernel matrices with a data-sparse structure and proposed a
direct method with an 0(n2d + né) complexity for the low-data regime, where the number of
observations n is small.

CovarianceFunctions.jl implements an automatic structure derivation engine for a large range of kernel
functions, including complex composite kernels like MacKay's neural network kernel and the spectral
mixture kernel, permitting an exact matrix-vector product in 0(n2d) operations with gradient kernel
matrices. It also contains a generic fallback with the regular 0(n2d2) complexity for cases where no
special structure is present or currently implemented. For example,

using CovarianceFunctions

using LinearAlgebra

k = CovarianceFunctions.MaternP(2); # Matérn kernel with v = 2.5

g = CovarianceFunctions.GradientKernel(k);

d, n = 1024, 1024; # generating high-d data with large number of samples

x = [randn(d) for _ in 1:n]; # data is vector of vectors

@time G = gramian(g, x); # instantiating lazy gradient kernel Gramian matrix
0.000013 seconds (1 allocation: 96 bytes)

size(BG) # G is nxd by nxd
(1048576, 1048576)

Despite the million by million matrix, MVMs are fast:

a = randn(nd);

b = zero(a);

@time mul!(b, G, a); # multiplying with G allocates little memory
0.394388 seconds (67 allocations: 86.516 KiB)

This would be impossible without CovarianceFunctions.jl's lazy and structured representation of the
gradient kernel matrix. Note that GradientKernel only computes covariances of gradient observations, to
__aetthe (d+1) x (d+1)_covariance kaernel that inclides value ohservations _tise ValueGradientKernel
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Sebastian Ament and Carla Gomes

[} Cornell University




First-Order Optimization
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Focus of Our Work

e Use iterative solvers based on 0(n*d) MVM

* Does not have low-data restriction
* Allows easy combining of value and derivative observations

* Increase scope of structured representations
e Automatic derivation of structure for vast class of kernels
e Structured Hessian kernel representations

* First-order Bayesian optimization

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022



Combining Orders

* We can combine value, gradient, and Hessian observations
Include the relevant cross covariances

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, to appear in ICML 2022



Gradient and Hessian MVM Benchmarks
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Composite Kernels MVM Benchmarks
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Scope Comparison to Prior Work

Table 1: MVM complexity with select gradient kernel matrices.
SM = spectral mixture kernel, NN = neural network kernel.
*See the discussion on the right about D-SKIP’s complexity.

RBF SM NN
GPFlow / SKLearn X X X
GPyTorch O(n?d?) X X
(Eriksson et al., 2018)  O(nd?)* X X
(De Roos et al., 2021)  O(n2d) X X

Our work O(n*d) O(n?d) O(n*d)




