Scalable First-Order Bayesian Optimization
via Structured Automatic Differentiation

Sebastian Ament and Carla Gomes

[} Cornell University

Bayesian Optimization

is designed to globally optimize functions that are

Bayesian Optimization
is designed to globally optimize functions that are

* expensive to evaluate $

Bayesian Optimization
is designed to globally optimize functions that are

* expensive to evaluate $

/N
* nhon-convex N\

Bayesian Optimization
is designed to globally optimize functions that are

* expensive to evaluate $

AN
* hon-convex N\

lck: =
* DIaCK DOXeS -
?

The Bayesian Optimization Loop

Evaluate d Update

objective surrogate
function model (GP)
Next input for Quantify uncertainty
objective of surrogate

\ Optimize
acquisition

function

The Bayesian Optimization Loop

Idea: add gradient observations Evaluate d Update

» objective surrogate
function model (GP)
Next input for Quantify uncertainty
objective of surrogate

\ Optimize
acquisition

function

The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

* Including gradient information into a GP surrogate involves
* nd by nd matrices

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

* Including gradient information into a GP surrogate involves
* nd by nd matrices

« 0(n?*d?) operations for matrix-vector multiplications (MVM:s)

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

* Including gradient information into a GP surrogate involves
* nd by nd matrices

« 0(n?*d?) operations for matrix-vector multiplications (MVM:s)
« 0(n3d?) operations for matrix inversion

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

* Including gradient information into a GP surrogate involves
* nd by nd matrices
« 0(n?*d?) operations for matrix-vector multiplications (MVM:s)
« 0(n3d?) operations for matrix inversion

 Our work reduces this to 0(n?d) for MVMs

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix

* n — number of evaluations of the objective
* d — number of parameters of the objective

* Including gradient information into a GP surrogate involves
* nd by nd matrices

« 0(n?*d?) operations for matrix-vector multiplications (MVM:s)
« 0(n3d?) operations for matrix inversion

 Our work reduces this to 0(n?d) for MVMs
e Use iterative solvers for solves

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix

* k(x,y) — covariance function of two inputs x and y
* Covariance function of gradients is given by G |k], where

Gif = axian

* G|lk]—-isd by d
* We show how to compute MVMs with G[k] in O(d).

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Problem: A Large Matrix
* If we have an 0(d) MVM with G[k], we have an MVM with KV in O0(n?d).

KV — covariance matrix between gradients of all points (nd by nd)

Kiz' = G[k](xi»y]')

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD
Many kernel can be written as

k(x,y) = f(proto(x,y)),

where proto(x,y) = (r-r), (c-r), or (x-y)
For these choices, we have

Glr-r| =-1;, Glc-r] =044q, and G|x-y| =14.

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD
Many kernel can be written as

k(x,y) = f(proto(x,y)),
where proto(x,y) = (r-r), (c-r), or (x-y)
For these choices, we have
Glr-r| =-1;, Glc-r] =044q, and G|x-y| =14.
— 0(d) MVM with G

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD

A Chain Rule Many kernels can be expressed as k = fog
where g 1s scalar-valued. For these types of kernels, we have

G[fogl=(f"o9) Glg]+ (f" o g) Vxlg]Vylg] "

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD

A Chain Rule Many kernels can be expressed as k = fog
where g 1s scalar-valued. For these types of kernels, we have

G[fogl=(f"o9) Glg]+ (f" o g) Vxlg]Vylg] "

— 0(d) MVM with G

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD

Sums and Products of kernels: k = [} k;

Glk] =) Glklp; + I<[k]" P Jy[K],
i=1
Direct sums and products:

J71
— 0(d) MVM with G

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD

And more
Rescaling Glk](x,y) = f(x)G[h](x,y)f(y) +
Vals00 koon] |3 T v) ko)
Warping K" = diag(J[u)(X))" HY diag(J[u](X)).

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

The Solution: Structure-Aware AD

F(x)E(x,y)f(y)) sin™! ok e ok f(X)k(XJ)f(YD

(a) Neural Network with f(x) = (x-x +1)7!/? (b) RBF Network with f(x) = e **

(c) Variable Linear Regression (d) Spectral Mixture

Figure 1: Computational graphs of composite kernels whose gradient kernel matrix can be expressed with the data-sparse
structured expressions derived in Section 3.2. Inside a node, k£ and A refer to kernels computed by previous nodes.

— 0(d) MVM with G

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Yet more: Hessian observations

0(d*) MVM with H

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Yet more: Hessian observations

C. Hessian Structure

Note that for arbitrary vectors a, b, not necessarily of the same length, a ® b = vec(ba "). This will come in handy to simplify certain
expressions in the following.

Dot-Product Kernels First, note that
V;vec(ny) =Lieyt+yel VyV;vec(ny) = Saa + I2.

Where Sqq is a "shuffle”" matrix such that Sgqvec(A) = vec(AT), and for square matrices A € R"*™ and B € R™*™, the Kronecker

sum is defined as A & B DN ® I + I, ® B. Then for dot-product kernels, we have

(k] (x,) = /" (r)vee(yy).
hyVy Kl(x,y) = f'(NIa @y +y @ L) + " (r)vec(yy)x .
[y hck] (6,) = (L + Saa) " (1)L + £ () (yx" @ yx)] + " (r)vee(yy vee(xx) .
Isotropic Kernels Then for isotropic product kernels with 7 = ||r||3, we have

Jxvec(rrT) =L1ir+rel; Hyvec(rrT) = Saa + 1z2.

‘Which implies
BVg K, 3) =~ ()L ® x4+ 1@ L) — [(r)vee(le) + 1" (r)vec(er e
hy huk(x,y) = (Lz + Saa)[f" () Lez + f” (r)(er"” ®rr")]
. oty [£ () . (rr T
+ [vec(ld) vec(rr)}) [VEL(Id) vec(rr)} .
A Chain Rule k(x,y) = (fog)(x,y).
[hyk](x,y) = f'(r)hx[g] + f”(r)vec(vx,(]ngT)~

[hxVy k(x,y) = " (r)(Hxg @ Vyg + Vyg @ Hxg) + [f"(r)hlg)) + £ (r)vec(VxgVxg ") Vyg "

hychy k(x,y) = (L2 + Saa)[f” (1)Lez + ' (r)(VxgVxg ' @ VygVyg)]

+ [hxg vec(ngvng)] U’/’/’((Tr)) ff/(/(/,/((:))] [hyg VEC(VygVygT)JT.

(k] (x, y) = f'(r)vec(La) + f"(r)vee(rr). 0 (d 4) IVI V M W it h H

Vertical Scaling k(x,y) = f(x)h(x,y)f(y) for a scalar-valued f, then

hyk(x,y) =hy[f(x)h(x,¥)]f(¥)
= [f(x)hx[h](x,y)
+h[f](x)h(x,y)
+ Vs h](x,y) ® V[f](x)
+ VI[fI(x) ® Vkl[h](x,y)] £(y)
[Vy k](x,y) = [f(x)[hx Vy] (x,y)
+h[f](x)[Vy hl(x,y)
+ G[h)(x,y) @ V[f](x)
+ V[f1(x) ® Gh](x,y)] £(¥)
+hy[f(x)h(x,y)]Vy f(¥)
[hychy K] (x,¥) = [f(x)[hchy A (x,y)
+ h[f](x)[hy h](x,y)
+ G[h(x,y) @ VIV [f](y)
+ VAV) ® GRI(xy)] f(y)
+ ha[f(x)h(x,y)hy f(y)

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in O(d?) operations.
Warping k(x,y) = h(u(x), u(y)),

huk(x,y) = (3 © 3) " [u] (%) [hxh] (u(x), u(y))
(hxVy kl(x,y) = (J © 3) " [u](x) [hxVy k) (u(x), u(y)) Iu](y)
[hxhy K](x,y) = (3 ©J) " [u)(x) [hxhy] (u(x), u(y)) (I @ I)[u(y).

We therefore see that K™ = hxhy k(X) = Dj[hxhy h](X)Dj, where Dy is the block-diagonal matrix whose ™ block is equal to
(J ® J)[u](x:) = J[u](x:) ® J[u](x;). Note that for linearly warped kernels for which u(x) = Ux, where U € R"*?, we have
(J ® J)[u](x:) = U @ U so that we can multiply with the kernel matrix K* in O(n?r? 4 n(d?r + r2d)). The complexity is due to the
following property of Kronecker product:

(U ® U)vec(H) = vec(UHU "),

which can be computed in O(d?r + r2d) for every of the n Hessian observations.

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Yet more: Hessian observations

C. Hessian Structure

Note that for arbitrary vectors a, b, not necessarily of the same length, a ® b = vec(ba "). This will come in handy to simplify certain
expressions in the following.

Dot-Product Kernels First, note that
V;vec(ny) =Lieyt+yel VyV;vec(ny) = Saa + I2.

Where Sqq is a "shuffle”" matrix such that Sgqvec(A) = vec(AT), and for square matrices A € R"*™ and B € R™*™, the Kronecker

sum is defined as A & B DN ® I + I, ® B. Then for dot-product kernels, we have

(k] (x,) = /" (r)vee(yy).
hyVy Kl(x,y) = f'(NIa @y +y @ L) + " (r)vec(yy)x .
[y hck] (6,) = (L + Saa) " (1)L + £ () (yx" @ yx)] + " (r)vee(yy vee(xx) .
Isotropic Kernels Then for isotropic product kernels with 7 = ||r||3, we have

Jxvec(rrT) =L1ir+rel; Hyvec(rrT) = Saa + 1z2.

‘Which implies
BVg K, 3) =~ ()L ® x4+ 1@ L) — [(r)vee(le) + 1" (r)vec(er e
hy huk(x,y) = (Lz + Saa)[f" () Lez + f” (r)(er"” ®rr")]
. oty [£ () . (rr T
+ [vec(ld) vec(rr)}) [VEL(Id) vec(rr)} .
A Chain Rule k(x,y) = (fog)(x,y).
[hyk](x,y) = f'(r)hx[g] + f”(r)vec(vx,(]ngT)~

[hxVy k(x,y) = " (r)(Hxg @ Vyg + Vyg @ Hxg) + [f"(r)hlg)) + £ (r)vec(VxgVxg ") Vyg "

hychy k(x,y) = (L2 + Saa)[f” (1)Lez + ' (r)(VxgVxg ' @ VygVyg)]

+ [hxg vec(ngvng)] U’/’/’((Tr)) ff/(/(/,/((:))] [hyg VEC(VygVygT)JT.

(k] (x, y) = f'(r)vec(La) + f"(r)vee(rr). 0 (d 2) IVI V M W it h H

Vertical Scaling k(x,y) = f(x)h(x,y)f(y) for a scalar-valued f, then

hyk(x,y) =hy[f(x)h(x,¥)]f(¥)
= [f(x)hx[h](x,y)
+h[f](x)h(x,y)
+ Vs h](x,y) ® V[f](x)
+ VI[fI(x) ® Vkl[h](x,y)] £(y)
[Vy k](x,y) = [f(x)[hx Vy] (x,y)
+h[f](x)[Vy hl(x,y)
+ G[h)(x,y) @ V[f](x)
+ V[f1(x) ® Gh](x,y)] £(¥)
+hy[f(x)h(x,y)]Vy f(¥)
[hychy K] (x,¥) = [f(x)[hchy A (x,y)
+ h[f](x)[hy h](x,y)
+ G[h(x,y) @ VIV [f](y)
+ VAV) ® GRI(xy)] f(y)
+ ha[f(x)h(x,y)hy f(y)

Again, we observe a structured representation of the Hessian-kernel elements which permit a multiply in O(d?) operations.
Warping k(x,y) = h(u(x), u(y)),

huk(x,y) = (3 © 3) " [u] (%) [hxh] (u(x), u(y))
(hxVy kl(x,y) = (J © 3) " [u](x) [hxVy k) (u(x), u(y)) Iu](y)
[hxhy K](x,y) = (3 ©J) " [u)(x) [hxhy] (u(x), u(y)) (I @ I)[u(y).

We therefore see that K™ = hxhy k(X) = Dj[hxhy h](X)Dj, where Dy is the block-diagonal matrix whose ™ block is equal to
(J ® J)[u](x:) = J[u](x:) ® J[u](x;). Note that for linearly warped kernels for which u(x) = Ux, where U € R"*?, we have
(J ® J)[u](x:) = U @ U so that we can multiply with the kernel matrix K* in O(n?r? 4 n(d?r + r2d)). The complexity is due to the
following property of Kronecker product:

(U ® U)vec(H) = vec(UHU "),

which can be computed in O(d?r + r2d) for every of the n Hessian observations.

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Performance Comparison to Prior Work

107
10"
—
v 10
£
— —1 D-SKIP from “Scaling Gaussian
10 - g
+ L SPSygIOPrCh process regression with derivatives.”
| B D-SK|P (MVM) Eriksson et al. NeurlIPS 2018.
| . B
10—2 i /+ —— Our Work GPyTorch from "Gpytorch: Blackbox
P f“_ — — 0(d) matrix-matrix gaussian process
— - —0(d?) inference with gpu acceleration.”
_3 + Gardner et al. NeurlPS 2018.
10 1 1 1 1 1 1 1
1 4 16 04 256 1024 4096 16384

d

Figure 4: Time to first MVM of GPyTorch, D-SKIP, and
our work for RBF gradient kernel matrices with n = 1024.

Accuracy Comparison to Prior Work

10° ¢
- — =
>
@)
L 1075
8 —— D-SKIP
U —— Our Work
© — — 0O(vd)
Q —-—0(d?)
= 10
(_4'5‘ 10 -
Q
e
10 4 8 16 32
d

D-SKIP from “Scaling Gaussian process regression with derivatives.” Eriksson et al. NeurlPS 2018.

Bayesian Optimization Benchmarks

Comparing against
 Random sampling
e Convex optimization (L-BFGS)
* Convex optimization with restarts (L-BFGS-R)
e Bayesian Optimization (=)

BO with quadratic mixture kernel ()

(]
Tl
)
wn
T
o
R
o
(D
-3
o
@)
o
@)
(0 9)
©

...... = Proposed / scaled by our work

FOBO with quadratic mixture kernel (FOBO-Q)

©
[N}

©
o

Optimality gap ——

o
[N}

Griewank Rastrigin

0.8}

0.6

0.4r

0.2t

v
“
.,
.....
.

= 0.0t 0.0, ‘ ! ‘ ‘ ‘
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

lteration ——

CovarianceFunctions.jl

Our methods are now available and open source at:

github.com/SebastianAment/CovarianceFunctions.jl

eoe M- < [)] github.com 2 ¢ (©) ﬂ'] + 88

Cornell Student Center Cornell Essentials ~ Apple Wikipedia Google Maps ~ Beliebt v Google Translate ~ Prime Video

= README.md 4

Gradient Kernels

When conditioning Gaussian processes on gradient information, it is necessary to work with d x d matrix-
valued gradient kernels, where d is the dimension of the input. Roos et al. first noted that isotropic and
dot product kernels give rise to gradient kernel matrices with a data-sparse structure and proposed a
direct method with an 0(n2d + né) complexity for the low-data regime, where the number of
observations n is small.

CovarianceFunctions.jl implements an automatic structure derivation engine for a large range of kernel
functions, including complex composite kernels like MacKay's neural network kernel and the spectral
mixture kernel, permitting an exact matrix-vector product in 0(n2d) operations with gradient kernel
matrices. It also contains a generic fallback with the regular 0(n2d2) complexity for cases where no
special structure is present or currently implemented. For example,

using CovarianceFunctions

using LinearAlgebra

k = CovarianceFunctions.MaternP(2); # Matérn kernel with v = 2.5

g = CovarianceFunctions.GradientKernel(k);

d, n = 1024, 1024; # generating high-d data with large number of samples

x = [randn(d) for _ in 1:n]; # data is vector of vectors

@time G = gramian(g, x); # instantiating lazy gradient kernel Gramian matrix
0.000013 seconds (1 allocation: 96 bytes)

size(BG) # G is nxd by nxd
(1048576, 1048576)

Despite the million by million matrix, MVMs are fast:

a = randn(nd);

b = zero(a);

@time mul!(b, G, a); # multiplying with G allocates little memory
0.394388 seconds (67 allocations: 86.516 KiB)

This would be impossible without CovarianceFunctions.jl's lazy and structured representation of the
gradient kernel matrix. Note that GradientKernel only computes covariances of gradient observations, to
__aetthe (d+1) x (d+1)_covariance kaernel that inclides value ohservations _tise ValueGradientKernel

Thank you for listening!

Sebastian Ament and Carla Gomes

[} Cornell University

First-Order Optimization

locally optimizes a function by

Evaluate l ‘

objective
function and
its gradient

Optimize objective
along scaled
gradient direction

Update input

Focus of Our Work

e Use iterative solvers based on 0(n*d) MVM

* Does not have low-data restriction
* Allows easy combining of value and derivative observations

* Increase scope of structured representations
e Automatic derivation of structure for vast class of kernels
e Structured Hessian kernel representations

* First-order Bayesian optimization

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, ICML 2022

Combining Orders

* We can combine value, gradient, and Hessian observations
Include the relevant cross covariances

Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation, Ament and Gomes, to appear in ICML 2022

Gradient and Hessian MVM Benchmarks

Fast

Gradient

Hessian

time (s)

time (s)

10°

107"+

1072

1073

107

107°

Naive

Scaling

| 108 10°

—o— fast

—o— naive 10° 10°

- - 0(d) -0.5
I 104 10*
I ° 10° 10°
- 102 102

10 10"

L L L i I | | | 100 100

10° 10" 102 10® 10* 105 10° 10°
108} 108}

—o— fast
|~ naive 10%¢ 10%;

[O(dZ)
N 104+ 104
- © 103 -3
L 102

-3.5
7I 1 1 1 N —4
10° 10" 102 103 10° 10" 102 103 time
d n n (log10s)

Composite Kernels MVM Benchmarks

Exponential Dot

Neural Network

time (s)

time (s)

10°t
107"
1072}
10—3k
1074+
107t

100,
107"}
10—2,
1073}
1074}
1075}

Scaling

—o— fast
—o— naive

—o— fast
—o— naive

’

10° 10" 102 10® 10* 10° 10°

d

Naive Fast

106 108
10° 10°
10* 10*
103 103
102 102
10’ 10’
10° 10°

10° 10’ 102 108 10°
108 10°
108 10°
104 10*
10° 10°
102 102
10" 10°
10° 10°

10° 10" 102 100 10° 10’ 10° 10% time

n n 0gl0s)

Scope Comparison to Prior Work

Table 1: MVM complexity with select gradient kernel matrices.
SM = spectral mixture kernel, NN = neural network kernel.
*See the discussion on the right about D-SKIP’s complexity.

RBF SM NN
GPFlow / SKLearn X X X
GPyTorch O(n?d?) X X
(Eriksson et al., 2018) O(nd?)* X X
(De Roos et al., 2021) O(n2d) X X

Our work O(n*d) O(n?d) O(n*d)

