Connect, Not Collapse: Explaining Contrastive
Learning for Unsupervised Domain Adaptation
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Labeled source domain  Unlabeled target domain

Goal: high accuracy on target domain (without labels)
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Motivated by theories such as HAH divergence (Ben-David et al 2010):
want source and target reps to be “indistinguishable” to get good target
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want source and target reps to be “indistinguishable” to get good target
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Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)
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Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)

Step 3: evaluate accuracy (target)

Inspired by e.g., Blitzer et al 2007

12



Contrastive pre-training for UDA

Contrastive pre-training (SWAV, Caron et al. 2020) is competitive with UDA

methods (even when all methods use the same augmentations)
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Contrastive pre-training for UDA

Contrastive pre-training (SWAV, Caron et al. 2020) is competitive with UDA

methods (even when all methods use the same augmentations)
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Contrastive pre-training for UDA

Contrastive pre-training (SWAV, Caron et al. 2020) is competitive with UDA

methods (even when all methods use the same augmentations)

eol ‘ ERM
Conventional hypothesis: does contrastive pre-training automatically

merge the features across domains to achieve low HAH-divergence?
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Contrastive pre-training doesn’t bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or
between classes

Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)
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Contrastive pre-training doesn’t bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or
between classes
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Contrastive pre-training doesn’t bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or
between classes

Domain 1 (Sketch) Domain 2 (Real)

Class 1

(Butterfly)
Between classes
_ DANN: 6% err
Between domains Contrastive: 7% err
Class 2 DANN: 14% err
(Clock) Contrastive: 8% err

>

Pre-training does not produce domain invariant features,

and domains are about as “far apart” as classes!
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Contrastive pre-training for UDA

* Performs competitively with strong baselines: SENTRY (Prabhu et al.
2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

* Instead of collapsing domains together, learns features that vary

substantially across domains

Why do these features still generalize to the target

without domain invariance?



Outline

e Setup: augmentation graph
* Intuitions and theoretical results
* Main intuitions (toy example)
* Results for stochastic block model & beyond

* Contrastive pre-training vs. ERM & DANN

* Test theoretical predictions on real data
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Setup: augmentation graph

* Contrastive learning hinges on positive pairs (augmentations of the same
original input)
* Contrastive objective:

* map positive pairs to similar features

* map augmentations of different inputs to different features



Setup: augmentation graph

Class 1
(Butterfly)

Class 2
(Clock)

Domain 1 (Sketch)

Domain 2 (Real)
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real)
([ R @ 4 «a:probability that
Class 1 augmentations of
(Butterfly) images coincide
Class 2

(Clock)
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Setup: augmentation graph
Domain 1 (Sketch) Domain 2 (Real)
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(Butterfly)
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Setup: augmentation graph

Domain 1 (Sketch) Domain 2 (Real)
Class 1
(Butterfly)
Class2 p
(Clock)

Magnitudes of connectivity parameters p, a, 5, and y = similarity of augmentations
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Class 1
(Butterfly)

Setup: augmentation graph

Can express augmentation graph using adjacency matrix A
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Setup: augmentation graph

Sketch Sketch Real Real
clock butterfly  clock  butterfly

Class 1 p< \ Sketch
(Butterfly) clock p p a y
Sketch B o
butterfly P 14
Real
clock « 14 P b
Real o B
butterfly 14 P

Can express augmentation graph using adjacency matrix A
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Outline

* Intuitions and theoretical results
* Main intuitions (toy example)
* Results for stochastic block model & beyond

* Contrastive pre-training vs. ERM & DANN
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* Let S, be the positive pair distribution, P, the unlabeled data

distribution, and f the feature extractor
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Intuitions & toy example

* Let S, be the positive pair distribution, P, the unlabeled data

distribution, and f the feature extractor

»Cpretrain(f) = —2- ]E(a:,a:+)~5+ [f(SC)Tf(ZIZ+)] + Il:-4:’1137913"\JPU [(f<$)—rf(x,))2]

\ J |\ J
| |

Augmentations of same image -> similar reps Augmentations of diff images -> diff reps

42



Intuitions & toy example
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distribution, and f the feature extractor
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* We learn f : X = R¥ that minimizes the spectral contrastive loss above
(HaoChen et al. 2021)



Intuitions & toy example

* Let S, be the positive pair distribution, P, the unlabeled data

distribution, and f the feature extractor
2
£pretrain<f) = —2- E(:p,x+)~5+ [f(x>—rf($+)] + ECB,CE’NPU [(f(a:)Tf(x’)) ]

* We learn f : X = R¥ that minimizes the spectral contrastive loss above
(HaoChen et al. 2021)

* In our toy example, we can compute fexactly and then visualize the

(learned) representations
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* Binary classification, 1 example per class and domain (4 examples total)

e Let F: R¥*3 be a matrix whose rows contain learned features

Domain 1 (Sketch) Domain 2 (Real)

# |

Class 1
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Intuitions & toy example

* Binary classification, 1 example per class and domain (4 examples total)

e Let F: R¥*3 be a matrix whose rows contain learned features

Class 1
(Butterfly)

Class 2
(Clock)

Domain 1 (Sketch) Domain 2 (Real)

# |

P

f (sketch clock) =——

f (sketch butterfly) —

f (real clock)

A~

—

f (real butterfly) ——
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Intuitions & toy example

* Recall: A is adjacency matrix of positive pair probabilities

» [ = argming|| A — FFT||y if we use spectral contrastive loss (HaoChen
et al. 2021)

e Columns of F = top k eigenvectors of 4, up to rotation

* The eigenvalues of F (and their ranking) are a function of connectivity

parameters a, 5,v, p

—> connectivity parameters control pre-trained features F



Class 1
(Butterfly)

Class 2 p

(Clock)

Intuitions & toy example

Augmentation graph
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Class 1
(Butterfly)

Class 2 p

(Clock)

oC «

Intuitions & toy example

Augmentation graph

If min(a, B) > y (and self-loop p is the largest):
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Intuitions & toy example

If min(a, B) > y (and self-loop p is the largest):

Class 1
(Butterfly)

Class 2 p
(Clock)

Augmentation graph Learned representation space
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Intuitions & toy example

If min(a, B) > y (and self-loop p is the largest):

Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)
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Intuitions & toy example

If min(a, B) > y (and self-loop p is the largest):

Class 1
(Butterfly)
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Intuitions & toy example

If min(a, B) > y (and self-loop p is the largest):

Class 1
(Butterfly)

Class 2 p
(Clock)

Key condition for transfer: augmentations are more likely to change only

domain () or only class () than both domain and class (y)
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Class 1
(Butterfly)

Intuitions & toy example

If instead a < y:
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Intuitions & toy example

If instead a < y:

Class 1
(Butterfly)

Class 2 p
(Clock)

If the condition is violated, the target features can be “swapped” so that a

source-trained linear classifier fails to generalize

60
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Generalization beyond simple example

* Consider stochastic block model (SBM): extends to multiple domains,

multiple classes, and multiple examples per class/domain

* We prove: same conditions (min(a, ) > y and p is largest) allow
contrastive pre-training to learn linearly transferable features (with easily

separable source and target features)

* Follow-up work generalizes beyond random graph models: HaoChen et
al. 2022



Contrastive pre-training vs. baselines

* We give an instance where contrastive pre-training can outperform ERM

and DANN, even with the same augmentations (see paper)



Outline

* Test theoretical predictions on real data
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Connectivity predicts target accuracy

* Qur theory predicts that target accuracy depends on «, 3,y and
requiresthata > yand f >y

* Estimate «a, 3, y by training a classifier to predict between augmented

images of different domains/classes, evaluate on held out examples

Wwa

target accuracy ~ (a/v)“*-(B/7)

 Estimate wy, w, by fitting a linear function in log space and determine

quality of fit compared to a control



Predicting target accuracy (contrastive methods)
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Actual accuracy gain
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Class and domain are disentangled

* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity
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* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIC f SIc f tgt

VS. figt  VS. faom  VS. fdom

Living-17 0.397 0.013 0.016
DomainNet 0.187 0.018 0.018

74



Class and domain are disentangled

* We train a linear probe for class and domain information in the
contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIC f SIc f tgt

VS. figt | VS. faom  VS- fdom

Jtgt Living-17 | 0397 | 0.013  0.016
DomainNet | 0.187 0.018 0.018

75



Class and domain are disentangled

* We train a linear probe for class and domain information in the

contrastive features, finding that class and domain classifiers have low

cosine similarity
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Class and domain are disentangled

* We train a linear probe for class and domain information in the

contrastive features, finding that class and domain classifiers have low

cosine similarity

f SIC f SIc f tgt

VvS. figt  VS. faom | VS- fdom

fdom ftgt Living-17 0.397 0.013 0.016
> DomainNet  0.187 0.018 0.018
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Dropping examples

* Consider random examples vs. examples that are “in between” two

domains, contributing most to connectivity between domains

* Procedure: train classifier to distinguish between source and target

domains, pre-train only on examples classifier is most confident on
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Target Unlabeled Data is Important

* Access to target unlabeled examples is important for robustness
(pretraining on source examples alone does not lead to robustness

gains)



Target Unlabeled Data is Important

* Access to target unlabeled examples is important for robustness
(pretraining on source examples alone does not lead to robustness

gains)

ERM SwAV (S) SwAV (T) SwAV (§+T)

Living-17 63.29 62.71 70.41 75.12
Entity-30  52.52 52.33 60.33 62.03
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Concluding Thoughts: Why Pretraining?

e Rich organization can pretrain once, everyone can fine-tune for many

tasks cheaply

* This approach gets SOTA on many robustness datasets: WILDS-FMoW,
WILDS-iWildCam, ImageNet robustness, DomainNet

e Our paper: why does pretraining help? Is it just about having lots of

data?
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Conclusion Thu 6pm — 8pm

* Contrastive pre-training is a competitive method for UDA
* Works without collapsing source and target representations

* Instead, disentangles class and domain information, enabling transfer

* Consequence of the structure of connections between domains and classes

via data augmentations
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