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Unsupervised domain adaptation (UDA)

Clock ?

Goal: high accuracy on target domain (without labels)

Labeled source domain Unlabeled target domain
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Classical approach for UDA
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Match 
distributions

Labeled source domain Unlabeled target domain
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Motivated by theories such as 𝐻Δ𝐻 divergence (Ben-David et al 2010): 
want source and target reps to be “indistinguishable” to get good target 
accuracy

Classical approach for UDA
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Motivated by theories such as 𝐻Δ𝐻 divergence (Ben-David et al 2010): 
want source and target reps to be “indistinguishable” to get good target 
accuracy

Classical approach for UDA

DANN (Ganin et al. 2016)UDA-SS (Sun et al. 2019)
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Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)
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Pre-training for UDA

Step 1: pre-train on unlabeled data (combined source + target)

Step 2: fine-tune on labeled data (source)

Step 3: evaluate accuracy (target)

Inspired by e.g., Blitzer et al 2007
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Contrastive pre-training for UDA

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA 
methods (even when all methods use the same augmentations)
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Contrastive pre-training for UDA

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA 
methods (even when all methods use the same augmentations)

SwAV + Extra: unlabeled 
pre-training data beyond 
source + target = all 4 
domains (DomainNet) or 
all of ImageNet (Living-17, 
Entity-30)
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Contrastive pre-training for UDA

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA 
methods (even when all methods use the same augmentations)

SwAV + Extra: unlabeled 
pre-training data = all 4 
domains (DomainNet) or 
all of ImageNet (Living-17, 
Entity-30)

Conventional hypothesis: does contrastive pre-training automatically 
merge the features across domains to achieve low HΔH-divergence?
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Contrastive pre-training doesn’t bring domains together

Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)

Domain 1 (Sketch)

Inspect DANN vs contrastive learning features: train discriminator between domains or 
between classes
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Contrastive pre-training doesn’t bring domains together

Domain 2 (Real)
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(Butterfly)
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(Clock)
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DANN: 14% err

Contrastive: 8% err
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Contrastive pre-training doesn’t bring domains together

Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)

Domain 1 (Sketch)

Between domains
DANN: 14% err

Contrastive: 8% err

Between classes
DANN: 6% err

Contrastive: 7% err

Inspect DANN vs contrastive learning features: train discriminator between domains or 
between classes

Pre-training does not produce domain invariant features,
and domains are about as “far apart” as classes!
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• Performs competitively with strong baselines: SENTRY (Prabhu et al. 
2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

Contrastive pre-training for UDA
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• Performs competitively with strong baselines: SENTRY (Prabhu et al. 
2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

• Instead of collapsing domains together, learns features that vary 
substantially across domains

Contrastive pre-training for UDA
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• Performs competitively with strong baselines: SENTRY (Prabhu et al. 
2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

• Instead of collapsing domains together, learns features that vary 
substantially across domains

Contrastive pre-training for UDA

Why do these features still generalize to the target
without domain invariance?



• Setup: augmentation graph

• Intuitions and theoretical results

• Main intuitions (toy example)

• Results for stochastic block model & beyond

• Contrastive pre-training vs. ERM & DANN

• Test theoretical predictions on real data
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• Contrastive learning hinges on positive pairs (augmentations of the same 

original input)

Setup: augmentation graph
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• Contrastive learning hinges on positive pairs (augmentations of the same 

original input)

• Contrastive objective:

• map positive pairs to similar features

• map augmentations of different inputs to different features

Setup: augmentation graph
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Setup: augmentation graph
Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)
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Setup: augmentation graph
Domain 1 (Sketch) Domain 2 (Real)

𝜶

𝜶

Class 1
(Butterfly)

Class 2
(Clock)

𝛼: probability that 
augmentations of 
images coincide
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Setup: augmentation graph
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Setup: augmentation graph
Domain 1 (Sketch) Domain 2 (Real)
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𝜶
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Class 2
(Clock)
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Setup: augmentation graph
Domain 1 (Sketch) Domain 2 (Real)
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Setup: augmentation graph

𝝆

𝝆

𝝆

𝝆

Domain 1 (Sketch) Domain 2 (Real)

Class 1
(Butterfly)

Class 2
(Clock)

𝜶

𝜸

𝜶

Magnitudes of connectivity parameters 𝜌, 𝛼, 𝛽, and 𝛾 ≈ similarity of augmentations

𝜷 𝜷
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Setup: augmentation graph

Can express augmentation graph using adjacency matrix 𝐴
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Sketch 
clock

Sketch 
butterfly

Real 
clock

Real 
butterfly

Sketch 
clock 𝜌 𝛽 𝛼 𝛾

Sketch 
butterfly 𝛽 𝜌 𝛾 𝛼

Real    
clock 𝛼 𝛾 𝜌 𝛽

Real 
butterfly 𝛾 𝛼 𝛽 𝜌

Setup: augmentation graph

Can express augmentation graph using adjacency matrix 𝐴
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Intuitions & toy example

• Let 𝑆! be the positive pair distribution
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Intuitions & toy example

• Let 𝑆! be the positive pair distribution, 𝑃" the unlabeled data 
distribution
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• Let 𝑆! be the positive pair distribution, 𝑃" the unlabeled data 
distribution, and 𝑓 the feature extractor

Intuitions & toy example

Augmentations of same image -> similar reps Augmentations of diff images -> diff reps
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• Let 𝑆! be the positive pair distribution, 𝑃" the unlabeled data 
distribution, and 𝑓 the feature extractor

• We learn *𝑓 : 𝑋 → 𝑅# that minimizes the spectral contrastive loss above 
(HaoChen et al. 2021)

Intuitions & toy example
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• Let 𝑆! be the positive pair distribution, 𝑃" the unlabeled data 
distribution, and 𝑓 the feature extractor

• We learn *𝑓 : 𝑋 → 𝑅# that minimizes the spectral contrastive loss above 
(HaoChen et al. 2021)

• In our toy example, we can compute *𝑓 exactly and then visualize the 
(learned) representations

Intuitions & toy example
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Intuitions & toy example

• Binary classification, 1 example per class and domain (4 examples total)
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Intuitions & toy example

• Binary classification, 1 example per class and domain (4 examples total)

• Let /𝐹: 𝑅$×& be a matrix whose rows contain learned features
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Intuitions & toy example

• Binary classification, 1 example per class and domain (4 examples total)

• Let /𝐹: 𝑅$×& be a matrix whose rows contain learned features

/𝐹 =

'𝑓 (sketch clock)

'𝑓 (sketch butter6ly)

'𝑓 (real clock)

'𝑓 (real butter6ly)
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Intuitions & toy example

• Recall: 𝐴 is adjacency matrix of positive pair probabilities
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Intuitions & toy example

• Recall: 𝐴 is adjacency matrix of positive pair probabilities

• /𝐹 = argmin '(|| 𝐴 − /𝐹 /𝐹)||( if we use spectral contrastive loss (HaoChen 
et al. 2021)
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Intuitions & toy example

• Recall: 𝐴 is adjacency matrix of positive pair probabilities

• /𝐹 = argmin '(|| 𝐴 − /𝐹 /𝐹)||( if we use spectral contrastive loss (HaoChen 
et al. 2021)

• Columns of /𝐹 = top 𝑘 eigenvectors of 𝐴, up to rotation 

• The eigenvalues of /𝐹 (and their ranking) are a function of connectivity 
parameters 𝛼, 𝛽, 𝛾, 𝜌

⟹ connectivity parameters control pre-trained features /𝐹
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Intuitions & toy example

Augmentation graph
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Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):

Augmentation graph
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Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):

Augmentation graph Learned representation space
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Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):
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Intuitions & toy example
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Intuitions & toy example

If 𝐦𝐢𝐧 𝜶,𝜷 > 𝜸 (and self-loop 𝜌 is the largest):

Key condition for transfer: augmentations are more likely to change only 
domain (𝛼) or only class (𝛽) than both domain and class (𝛾)
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Intuitions & toy example
If instead 𝛼 < 𝛾:

Swapped
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Intuitions & toy example
If instead 𝛼 < 𝛾:

Swapped

If the condition is violated, the target features can be “swapped” so that a 
source-trained linear classifier fails to generalize
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Generalization beyond simple example

• Consider stochastic block model (SBM): extends to multiple domains, 
multiple classes, and multiple examples per class/domain
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Generalization beyond simple example

• Consider stochastic block model (SBM): extends to multiple domains, 
multiple classes, and multiple examples per class/domain

• We prove: same conditions (min 𝛼, 𝛽 > 𝛾 and 𝜌 is largest) allow 
contrastive pre-training to learn linearly transferable features (with easily 
separable source and target features)
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Generalization beyond simple example

• Consider stochastic block model (SBM): extends to multiple domains, 
multiple classes, and multiple examples per class/domain

• We prove: same conditions (min 𝛼, 𝛽 > 𝛾 and 𝜌 is largest) allow 
contrastive pre-training to learn linearly transferable features (with easily 
separable source and target features)

• Follow-up work generalizes beyond random graph models: HaoChen et 
al. 2022
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Contrastive pre-training vs. baselines

• We give an instance where contrastive pre-training can outperform ERM 
and DANN, even with the same augmentations (see paper)



• Setup: augmentation graph

• Intuitions and theoretical results

• Main intuitions (toy example)

• Results for stochastic block model & beyond

• Contrastive pre-training vs. ERM & DANN

• Test theoretical predictions on real data
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• Our theory predicts that target accuracy depends on 𝛼, 𝛽, 𝛾 and 
requires that 𝛼 > 𝛾 and 𝛽 > 𝛾

Connectivity predicts target accuracy



67

• Our theory predicts that target accuracy depends on 𝛼, 𝛽, 𝛾 and 
requires that 𝛼 > 𝛾 and 𝛽 > 𝛾

• Estimate 𝛼, 𝛽, 𝛾 by training a classifier to predict between augmented 
images of different domains/classes, evaluate on held out examples

Connectivity predicts target accuracy



68

• Our theory predicts that target accuracy depends on 𝛼, 𝛽, 𝛾 and 
requires that 𝛼 > 𝛾 and 𝛽 > 𝛾

• Estimate 𝛼, 𝛽, 𝛾 by training a classifier to predict between augmented 
images of different domains/classes, evaluate on held out examples

Connectivity predicts target accuracy



69

• Our theory predicts that target accuracy depends on 𝛼, 𝛽, 𝛾 and 
requires that 𝛼 > 𝛾 and 𝛽 > 𝛾

• Estimate 𝛼, 𝛽, 𝛾 by training a classifier to predict between augmented 
images of different domains/classes, evaluate on held out examples

• Estimate 𝑤*, 𝑤+ by fitting a linear function in log space and determine 
quality of fit compared to a control

Connectivity predicts target accuracy
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Predicting target accuracy (contrastive methods)
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Predicting target accuracy (controls)
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Predicting target accuracy (controls)

Lower quality of fit for non-contrastive 
methods: DANN and SENTRY
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• We train a linear probe for class and domain information in the 
contrastive features, finding that class and domain classifiers have low 
cosine similarity

Class and domain are disentangled
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• We train a linear probe for class and domain information in the 
contrastive features, finding that class and domain classifiers have low 
cosine similarity

Class and domain are disentangled
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Dropping examples
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(pretraining on source examples alone does not lead to robustness 
gains)

Target Unlabeled Data is Important
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Concluding Thoughts: Why Pretraining?
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• Rich organization can pretrain once, everyone can fine-tune for many 

tasks cheaply

• This approach gets SoTA on many robustness datasets: WILDS-FMoW, 

WILDS-iWildCam, ImageNet robustness, DomainNet

• Our paper: why does pretraining help? Is it just about having lots of 

data?

Concluding Thoughts: Why Pretraining?
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• Contrastive pre-training is a competitive method for UDA

• Works without collapsing source and target representations

• Instead, disentangles class and domain information, enabling transfer

• Consequence of the structure of connections between domains and classes 

via data augmentations

Conclusion
Poster Hall E, #317

Thu 6pm – 8pm


