Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation

Kendrick Shen*

Robbie Jones*

Ananya Kumar*

Sang Michael Xie*

Jeff Z. HaoChen

Tengyu Ma

Percy Liang

Unsupervised domain adaptation (UDA)

Labeled source domain

Clock

Unsupervised domain adaptation (UDA)

Labeled source domain Unlabeled

Clock

Unlabeled target domain

ر.

Unsupervised domain adaptation (UDA)

Labeled source domain Unlabeled target domain

Goal: high accuracy on target domain (without labels)

Labeled source domain

Unlabeled target domain

Labeled source domain

Unlabeled target domain

Unlabeled target domain Labeled source domain Source **Target** representations representations Match High accuracy distributions (given labels)

Motivated by theories such as $H\Delta H$ divergence (Ben-David et al 2010): want source and target reps to be "indistinguishable" to get good target accuracy

Motivated by theories such as $H\Delta H$ divergence (Ben-David et al 2010): want source and target reps to be "indistinguishable" to get good target accuracy

UDA-SS (Sun et al. 2019)

DANN (Ganin et al. 2016)

Step 1: pre-train on unlabeled data (combined source + target)

Step 1: pre-train on unlabeled data (combined source + target)

Step 2: fine-tune on labeled data (source)

Step 1: pre-train on unlabeled data (combined source + target)

Step 2: fine-tune on labeled data (source)

Step 3: evaluate accuracy (target)

• Unsupervised representation learning for UDA inspired by e.g., Blitzer et al. 2007

- Unsupervised representation learning for UDA inspired by e.g., Blitzer et al. 2007
 - Representations learned on diverse unlabeled data may relate domains, enabling transfer. But not typically used for deep models

- Unsupervised representation learning for UDA inspired by e.g., Blitzer et al. 2007
 - Representations learned on diverse unlabeled data may relate domains, enabling transfer. But not typically used for deep models
- What about modern pre-training methods, such as contrastive learning (van den Oord et al. 2018, Chen et al. 2020, Caron et al. 2020)?

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA methods (even when all methods use the same augmentations)

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA methods (even when all methods use the same augmentations)

Contrastive pre-training (SwAV, Caron et al. 2020) is competitive with UDA methods (even when all methods use the same augmentations)

Conventional hypothesis: does contrastive pre-training automatically merge the features across domains to achieve low $H\Delta H$ -divergence?

SwAV + Extra: unlabeled pre-training data = all 4 domains (DomainNet) or all of ImageNet (Living-17, Entity-30)

Contrastive pre-training doesn't bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or between classes

Domain 1 (Sketch)

Class 1 (Butterfly)

Class 2 (Clock)

Domain 2 (Real)

Contrastive pre-training doesn't bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or between classes

Domain 1 (Sketch)

Domain 2 (Real)

Class 1 (Butterfly)

Class 2 (Clock)

Between domains DANN: 14% err

Contrastive: 8% err

Between classes DANN: 6% err

Contrastive: 7% err

Contrastive pre-training doesn't bring domains together

Inspect DANN vs contrastive learning features: train discriminator between domains or between classes

Domain 1 (Sketch)

Domain 2 (Real)

Class 1 (Butterfly)

Class 2 (Clock)

Between domains DANN: 14% err

Contrastive: 8% err

Between classes DANN: 6% err

Contrastive: 7% err

Pre-training does not produce domain invariant features, and domains are about as "far apart" as classes!

• Performs competitively with strong baselines: SENTRY (Prabhu et al. 2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)

- Performs competitively with strong baselines: SENTRY (Prabhu et al. 2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)
- Instead of collapsing domains together, learns features that vary substantially across domains

- Performs competitively with strong baselines: SENTRY (Prabhu et al. 2021), DIRT-T (Shu et al. 2018), and DANN (Ganin et al. 2016)
- Instead of collapsing domains together, learns features that vary substantially across domains

Why do these features still generalize to the target without domain invariance?

Outline

- Setup: augmentation graph
- Intuitions and theoretical results
 - Main intuitions (toy example)
 - Results for stochastic block model & beyond
 - Contrastive pre-training vs. ERM & DANN
- Test theoretical predictions on real data

Outline

- Setup: augmentation graph
- Intuitions and theoretical results
 - Main intuitions (toy example)
 - Results for stochastic block model & beyond
 - Contrastive pre-training vs. ERM & DANN
- Test theoretical predictions on real data

• Contrastive learning hinges on *positive pairs* (augmentations of the same original input)

- Contrastive learning hinges on positive pairs (augmentations of the same original input)
- Contrastive objective:
 - map positive pairs to similar features

- Contrastive learning hinges on *positive pairs* (augmentations of the same original input)
- Contrastive objective:
 - map positive pairs to similar features
 - map augmentations of different inputs to different features

Domain 1 (Sketch)

Domain 2 (Real)

Class 1 (Butterfly)

Class 2 (Clock)

Magnitudes of connectivity parameters ρ , α , β , and $\gamma \approx$ similarity of augmentations

Can express augmentation graph using adjacency matrix A

Outline

- Setup: augmentation graph
- Intuitions and theoretical results
 - Main intuitions (toy example)
 - Results for stochastic block model & beyond
 - Contrastive pre-training vs. ERM & DANN
- Test theoretical predictions on real data

• Let S_+ be the positive pair distribution, P_U the unlabeled data distribution, and f the feature extractor

- Let S_+ be the positive pair distribution, P_U the unlabeled data distribution, and f the feature extractor
- We learn $\widehat{f}: X \to R^k$ that minimizes the spectral contrastive loss (HaoChen et al. 2021):

$$\mathcal{L}_{\text{pretrain}}(f) = -2 \cdot \mathbb{E}_{(x,x^+) \sim S_+} \left[f(x)^\top f(x^+) \right] + \mathbb{E}_{x,x' \sim P_U} \left[\left(f(x)^\top f(x') \right)^2 \right]$$

- Let S_+ be the positive pair distribution, P_U the unlabeled data distribution, and f the feature extractor
- We learn $\widehat{f}: X \to R^k$ that minimizes the spectral contrastive loss (HaoChen et al. 2021):

$$\mathcal{L}_{\text{pretrain}}(f) = -2 \cdot \mathbb{E}_{(x,x^+) \sim S_+} \left[f(x)^\top f(x^+) \right] + \mathbb{E}_{x,x' \sim P_U} \left[\left(f(x)^\top f(x') \right)^2 \right]$$

• In our toy example, we can compute \widehat{f} exactly and then visualize the (learned) representations

• Binary classification, 1 example per class and domain (4 examples total)

- Binary classification, 1 example per class and domain (4 examples total)
- Let \hat{F} : $R^{4\times 3}$ be a matrix whose rows contain learned features

- Binary classification, 1 example per class and domain (4 examples total)
- Let \hat{F} : $R^{4\times 3}$ be a matrix whose rows contain learned features

• Recall: A is adjacency matrix of positive pair probabilities

- Recall: A is adjacency matrix of positive pair probabilities
- $\hat{F} = \operatorname{argmin}_{\hat{F}} ||A \hat{F}\hat{F}^T||_F$ if we use spectral contrastive loss (HaoChen et al. 2021)
- Columns of \hat{F} = top k eigenvectors of A, up to rotation

- Recall: A is adjacency matrix of positive pair probabilities
- $\hat{F} = \operatorname{argmin}_{\hat{F}} ||A \hat{F}\hat{F}^T||_F$ if we use spectral contrastive loss (HaoChen et al. 2021)
- Columns of $\hat{F} = \text{top } k$ eigenvectors of A, up to rotation
- The eigenvalues of \widehat{F} (and their ranking) are a function of connectivity parameters $\alpha, \beta, \gamma, \rho$

- Recall: A is adjacency matrix of positive pair probabilities
- $\hat{F} = \operatorname{argmin}_{\hat{F}} ||A \hat{F}\hat{F}^T||_F$ if we use spectral contrastive loss (HaoChen et al. 2021)
- Columns of $\hat{F} = \text{top } k$ eigenvectors of A, up to rotation
- The eigenvalues of \widehat{F} (and their ranking) are a function of connectivity parameters $\alpha, \beta, \gamma, \rho$

 \implies connectivity parameters control pre-trained features \widehat{F}

If $\min(\alpha, \beta) > \gamma$ (and self-loop ρ is the largest):

If $\min(\alpha, \beta) > \gamma$ (and self-loop ρ is the largest):

If $\min(\alpha, \beta) > \gamma$ (and self-loop ρ is the largest):

If $\min(\alpha, \beta) > \gamma$ (and self-loop ρ is the largest):

Key condition for transfer: augmentations are more likely to change **only** domain (α) or only class (β) than both domain and class (γ)

If instead $\alpha < \gamma$:

If instead $\alpha < \gamma$:

If the condition is violated, the target features can be "swapped" so that a source-trained linear classifier fails to generalize

Generalization beyond simple example

Consider stochastic block model (SBM): extends to multiple domains,
 multiple classes, and multiple examples per class/domain

Generalization beyond simple example

- Consider stochastic block model (SBM): extends to multiple domains,
 multiple classes, and multiple examples per class/domain
- We prove: **same conditions** ($\min(\alpha, \beta) > \gamma$ and ρ is largest) allow contrastive pre-training to learn linearly transferable features (with easily separable source and target features)

Generalization beyond simple example

- Consider stochastic block model (SBM): extends to multiple domains,
 multiple classes, and multiple examples per class/domain
- We prove: **same conditions** ($\min(\alpha, \beta) > \gamma$ and ρ is largest) allow contrastive pre-training to learn linearly transferable features (with easily separable source and target features)
- Follow-up work generalizes beyond random graph models: HaoChen et al. 2022

Contrastive pre-training vs. baselines

 We give an instance where contrastive pre-training can outperform ERM and DANN, even with the same augmentations

Contrastive pre-training vs. baselines

 We give an instance where contrastive pre-training can outperform ERM and DANN, even with the same augmentations

Outline

- Setup: augmentation graph
- Intuitions and theoretical results
 - Main intuitions (toy example)
 - Results for stochastic block model & beyond
 - Contrastive pre-training vs. ERM & DANN
- Test theoretical predictions on real data

Connectivity predicts target accuracy

• Our theory predicts that target accuracy depends on α , β , γ and requires that $\alpha>\gamma$ and $\beta>\gamma$

Connectivity predicts target accuracy

- Our theory predicts that target accuracy depends on α , β , γ and requires that $\alpha > \gamma$ and $\beta > \gamma$
- Estimate α , β , γ by training a classifier to predict between augmented images of different domains/classes, evaluate on held out examples

Connectivity predicts target accuracy

- Our theory predicts that target accuracy depends on α , β , γ and requires that $\alpha > \gamma$ and $\beta > \gamma$
- Estimate α , β , γ by training a classifier to predict between augmented images of different domains/classes, evaluate on held out examples $\text{target accuracy} \approx (\alpha/\gamma)^{w_1} \cdot (\beta/\gamma)^{w_2}$
- Estimate w_1, w_2 by fitting a linear function in log space and determine quality of fit compared to a control

Predicting target accuracy (contrastive methods)

Predicting target accuracy (controls)

Method	R^2
SwAV	0.78
MoCo-V2	0.79
MoCo-V3	0.60

Predicting target accuracy (controls)

Method	R^2
SwAV	0.78
MoCo-V2	0.79
MoCo-V3	0.60
DANN	0.31
SENTRY	0.03

Lower quality of fit for non-contrastive methods: DANN and SENTRY

 We train a linear probe for class and domain information in the contrastive features, finding that class and domain classifiers have low cosine similarity

 We train a linear probe for class and domain information in the contrastive features, finding that class and domain classifiers have low cosine similarity

	$f_{ m src}$ vs. $f_{ m tgt}$	$f_{ m src}$ vs. $f_{ m dom}$	$f_{ m tgt}$ vs. $f_{ m dom}$
Living-17	0.397	0.013	0.016
DomainNet	0.187	0.018	0.018

 We train a linear probe for class and domain information in the contrastive features, finding that class and domain classifiers have low cosine similarity

	$f_{ m src}$ vs. $f_{ m tgt}$	$f_{ m src}$ vs. $f_{ m dom}$	$f_{ m tgt}$ vs. $f_{ m dom}$
Living-17	0.397	0.013	0.016
DomainNet	0.187	0.018	0.018

Aligned

 We train a linear probe for class and domain information in the contrastive features, finding that class and domain classifiers have low cosine similarity

	$f_{ m src}$ vs. $f_{ m tgt}$	$f_{ m src}$ vs. $f_{ m dom}$	$f_{ m tgt}$ vs. $f_{ m dom}$
Living-17	0.397	0.013	0.016
DomainNet	0.187	0.018	0.018

Orthogonal

 We train a linear probe for class and domain information in the contrastive features, finding that class and domain classifiers have low cosine similarity

	$f_{ m src}$ vs. $f_{ m tgt}$	$f_{ m src}$ vs. $f_{ m dom}$	$f_{ m tgt}$ vs. $f_{ m dom}$
Living-17	0.397	0.013	0.016
DomainNet	0.187	0.018	0.018

Orthogonal

Dropping examples

• Consider random examples vs. examples that are "in between" two domains, contributing most to connectivity between domains

Dropping examples

- Consider random examples vs. examples that are "in between" two domains, contributing most to connectivity between domains
- Procedure: train classifier to distinguish between source and target domains, pre-train only on examples classifier is most confident on

Dropping examples

- Consider random examples vs. examples that are "in between" two domains, contributing most to connectivity between domains
- Procedure: train classifier to distinguish between source and target domains, pre-train only on examples classifier is most confident on

Target Unlabeled Data is Important

 Access to target unlabeled examples is important for robustness (pretraining on source examples alone does not lead to robustness gains)

Target Unlabeled Data is Important

 Access to target unlabeled examples is important for robustness (pretraining on source examples alone does not lead to robustness gains)

	ERM	SwAV (S)	SwAV (T)	SwAV (S+T)
Living-17	63.29	62.71	70.41	75.12
Entity-30	52.52	52.33	60.33	62.03

Conclusion

Contrastive pre-training is a competitive method for UDA

Conclusion

- Contrastive pre-training is a competitive method for UDA
- Works without collapsing source and target representations

Conclusion

- Contrastive pre-training is a competitive method for UDA
- Works without collapsing source and target representations
- Instead, disentangles class and domain information, enabling transfer
 - Consequence of the structure of connections between domains and classes
 via data augmentations