

Advances in Visual Recognition

Larger Models

Faster Computing

Bigger Data

Standard Visual Recognition Is Getting Saturated

Top Performing Models

Challenge - Real World Data Are Imperfect

- Domain shift
- Data noise
- Imbalanced distribution
- Can contain Occlusions
- Can be Cluttered
- Can be Ambiguous
- Can be Deceiving
-

More Challenging Scenarios

Corrupted ImageNet (ImageNet-C)

COCO-C/Cityscapes-C

How Well Do Current DNNs Perform?

Image Classification

Semantic Segmentation

ViTs Are Robust Learners

Figure 1: We show intriguing properties of ViT including impressive robustness to (a) severe occlusions, (b) distributional shifts (*e.g.*, stylization to remove texture cues), (c) adversarial perturbations, and (d) patch permutations. Furthermore, our ViT models trained to focus on shape cues can segment foregrounds without any pixel-level supervision (e). Finally, off-the-shelf features from ViT models generalize better than CNNs (f).

Naseer et al., Intriguing Properties of Vision Transformers, NeurIPS21

Mao et al., RVT: Towards Robust Vision Transformer, CVPR22

Zhang et al., Delving Deep into the Generalization of Vision Transformers under Distribution Shifts, CVPR22

Delving Deeper into ViT's Robustness

Visual Grouping and Information Bottleneck

Visual Grouping

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

Information Bottleneck (IB)

"Information bottlenecks are extremely interesting. I have to listen to it ten thousand times to really understand it. It's hard to hear such original ideas today. Maybe it's the key to the puzzle."

——Max Wertheimer

--Geoffrey Hinton

Visual Grouping

Segmentation by Graph Cuts

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low cost (low similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Source: Seitz

Spectral Clustering vs. Self-Attention

Image Credit: Spectral Clustering for Molecular Emission Segmentation.

Image Credit: Jay Alammar, The Illustrated Transformer.

Emerging Properties in ViTs

Correlation between grouping and robustness over network blocks

The Trinity among Visual Grouping, IB and Robust Generalization

Given a distribution $X \sim \mathcal{N}(X', \epsilon)$ with X being the observed noisy input and X' the target clean code, IB seeks a mapping f(Z|X) such that Z contains the relevant information in X for predicting X'. This goal is formulated as the following information-theoretic optimization problem:

$$f_{\text{IB}}^*(Z|X) = \arg\min_{f(Z|X)} I(X,Z) - I(Z,X'),$$
 (3)

Proposition 2.1. *Under mild assumptions, the iterative step to optimize the objective in Eqn.* (3) *can be written as:*

$$\mathbf{z}_{c} = \sum_{i=1}^{n} \frac{\log[n_{c}/n]}{n \det \Sigma} \frac{\exp\left[\frac{\mu_{c}^{\top} \Sigma^{-1} \mathbf{x}_{i}}{1/2}\right]}{\sum_{c=1}^{n} \exp\left[\frac{\mu_{c}^{\top} \Sigma^{-1} \mathbf{x}_{i}}{1/2}\right]} \mathbf{x}_{i}, \qquad (4)$$

or in matrix form:

$$Z = \operatorname{Softmax}(Q^{\top} K/d) V^{\top}, \tag{5}$$

with $V = [\mathbf{x}_1, \dots, \mathbf{x}_N] \frac{\log[n_c/n]}{n \det \Sigma}$, $K = [\mu_1, \dots, \mu_N] = W_K X$, $Q = \Sigma^{-1}[\mathbf{x}_1, \dots, \mathbf{x}_N]$ and d = 1/2. Here n_c , Σ and W_K are learnable variables.

MSHA as Mixture of IBs

Fully Attentional Network

- Further deploy the attention mechanism reinforce the clustering phenomenon
- Fore-ground objects are better captured
- Directly apply SA along the channel dimension has two drawbacks
 - 1) Large computational overhead
 - 2) Low parameter efficiency

Main Results - Image Classification

Model	Params (M) Clean IN-A IN-R IN-C								
ImageNet-1K Pre-trained									
XCiT-S24 (El-Nouby et al.)	47.7	82.6	27.8	45.5	49.4				
RVT-B* (Mao et al.)	91.8	82.6	28.5	48.7	46.8				
Swin-B (Liu et al.)	87.8	83.4	35.8	64.2	54.4				
ConvNeXt-B (Liu et al.)	88.6	83.8	36.7	51.3	46.8				
FAN	76.8	84.3	41.8	53.2	43.0				
ImageNet-22K Pre-trained									
ConvNeXt-B [‡] (Liu et al.)	88.6	86.8	62.3	64.9	43.1				
FAN	76.8	86.5	60.7	64.3	35.8				
FAN [‡]	76.8	87. 1	74.5	71.1	36.0				

Main Results - Downstream Tasks

framework are reported from [31]. FAN shows significantly stronger pre-trained on ImageNet-22K. clean accuracy and robustness than other models.

Model	Encoder Size	City	City-C	Retention
DeepLabv3+ (R50)	25.4M	76.6	36.8	48.0%
DeepLabv3+ (R101)	47.9M	77.1	39.4	51.1%
ICNet [32]	-	65.9	28.0	42.5%
FCN-8s [33]	50.1M	66.7	27.4	41.1%
ResNet-38 [34]	-	77.5	32.6	42.1%
ConvNeXt-T [14]	29.0M	79.0	54.4	68.9%
SETR [35]	22.1M	76.0	55.3	72.8%
Swin-T [24]	28.4M	78.1	47.3	60.6%
SegFormer-B0 [10]	3.4M	76.2	48.8	64.0%
SegFormer-B1 [10]	13.1M	78.4	52.7	67.2%
SegFormer-B2 [10]	24.2M	81.0	59.6	73.6%
SegFormer-B5 [10]	81.4M	82.4	65.8	79.9%
FAN-T-Hybrid (Ours)	7.4M	81.2	57.1	70.3%
FAN-S-Hybrid (Ours)	26.3M	81.5	66.4	81.5%
FAN-B-Hybrid (Ours)	50.4M	82.2	66.9	81.5%
FAN-L-Hybrid (Ours)	76.8M	82.3	68.7	83.5%

(a) Main results on semantic segmentation. 'R-' and 'X-' refer to DeepLabv3+, ResNet and Xception. The mIoUs of DeepLabv3+ accuracy and robustness than other models. '†' denotes the accuracy

Model	Encoder Size	COCO	COCO-C	Retention			
Mask R-CNN							
ResNet-50 [1]	25.4M	39.9	21.3	53.3%			
DeiT-S [2]	22.1M	40.0	26.9	67.3%			
Swin-T [24]	28.0M	46.0	29.3	63.7%			
ConvNeXt-T [24]		46.2					
FAN-T-Hybrid	7.0M	45.8	29.7	64.8%			
FAN-S-Hybrid	26.3M	49.1	35.5	72.3%			
Cascade R-CNN							
Swin-T		50.4					
ConvNeXt-T		50.4					
FAN-S-Hybrid	26.3M	53.3	38.7	72.6%			
Swin-B		51.9					
ConvNeXt-B		52.7					
FAN-L-Hybrid	76.8M	54.1	40.6	75.0%			
Swin-B [†]		53.0					
ConvNeXt-B [†]		54.0					
FAN-L-Hybrid [†]	76.8M	55.1	42.0	76.2%			

Code Available

https://github.com/NVlabs/FAN

