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Descent Lemma for Gradient Descent
Underpins most convergence proofs in Deep Learning

`

Learning Rate (LR) Hessian of loss LSharpness 
(aka smoothness)

Usual interpretation:  is globally bounded; trial and error is  
used to discover  that satisfies descent lemma.

λmax(∇2L)
η
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Finding: GD in popular architectures violates 
descent lemma.

•  along trajectory 
increases above  
2/ , then levels off. 

λmax(∇2L)

η
• Loss oscillates across 

iterations, with overall 
downward trend.

• Phenomenon appears for all finite .η
1. How can we analyze optimization in EoS setting?                              

(Given that descent lemma fails)
2. What mechanism controls  in the EoS phase? 🤔λmax(∇2L)

(Also shown for other architectures)
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Note:   diverges when  and  has rank at least 2. λmax(∇2 L) L → 0 ∇2L

Theorem: GD on loss  for small  has two 
phases.
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Phase 1:

Loss monotonically decreases till it becomes 
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Note:   diverges when  and  has rank at least 2. λmax(∇2 L) L → 0 ∇2L
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GD, phase II

𝑇2 = Θ(𝜂−2)

Limiting 

Flow

GD, phase I

𝑇1 = Θ(𝜂−1)

 manifold of local minΓ:

Gradient 

Flow

“Implicit bias for Sharpness Minimization”: 
    decreases over time.λmax(∇2L)



Experiments: GD trajectory consistent with theory

VGG-16 on CIFAR-10 dataset with Mean Square Loss

Enters EoS 
regime
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• Analyse EoS for loss ? (Hurdle: Real-life losses have complicated 
mathematical structure.) 

L

• Analyse Edge of Stability far from manifold of zero loss. (Our analysis only 
applies close to manifold.) 

• Explore EoS in SGD setting.


