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max (

used to discover 7 that satisfies descent lemma.
N\ Y




Edge of Stability (EoS)

Cohen et al. [2021]



Edge of Stability (EoS)

Cohen et al. [2021]

Finding: GD in popular architectures violates
descent lemma.



Edge of Stability (EoS)

Cohen et al. [2021]

Finding: GD in popular architectures violates
descent lemma.

EoS
phase




Edge of Stability (EoS)

Cohen et al. [2021]

Finding: GD in popular architectures violates
descent lemma.

. 1, (V*L) along trajectory
Increases above
2/n, then levels off.

EoS
phase




Edge of Stability (EoS)

Cohen et al. [2021]

Finding: GD in popular architectures violates
descent lemma.

. 1, (V*L) along trajectory
EoS Increases above
phase 2/n, then levels off.

e Loss oscillates across
iterations, with overall
downward trend.




Edge of Stability (EoS)

Cohen et al. [2021]

N
Finding: GD in popular architectures violates &
descent lemma. —s-:'
2 - o
» A,...(V~L) along trajectory =
EoS Increases above 30
phase 2/n, then levels off.

(-

-

o
[

e Loss oscillates across
iterations, with overall
downward trend.

A (V*L)

 Phenomenon appears for all finite #.

W

N
]

-
1

o

o o
1

o
1

VGG-16 on CIFAR-10

----r----—---—-“ -------------

6 20r00 40'00 60100 8000
lteration

(Also shown for other architectures)




Edge of Stability (EoS)

Cohen et al. [2021] VGG-16 on CIFAR-10
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1. How can we analyze optimization in EoS setting?
(Given that descent lemma fails)
2. What mechanism controls 4 (V-L) in the EoS phase? |
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Experiments: GD trajectory consistent with theory
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* Analyse EoS for loss L? (Hurdle: Real-life losses have complicated
mathematical structure.)

* Analyse Edge of Stability far from manifold of zero loss. (Our analysis only
applies close to manifold.)

* Explore EoS in SGD setting.



