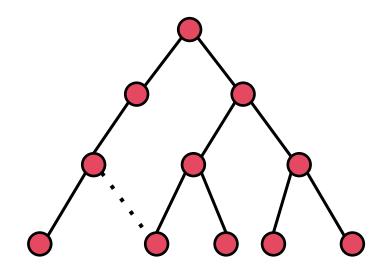


SPECTRE:

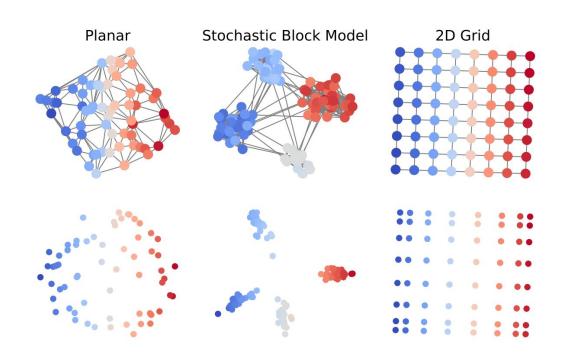
Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Karolis Martinkus¹, Andreas Loukas*², Nathanael Perraudin*³, Roger Wattenhofer¹

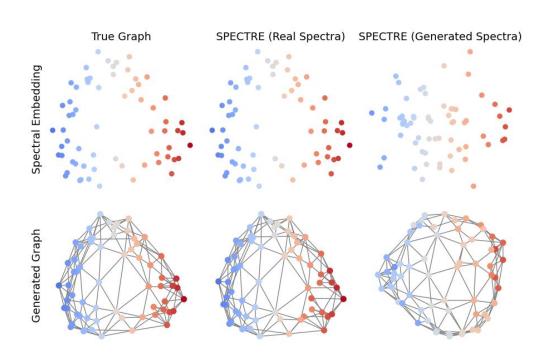

¹ETH Zurich, ²Prescient Design/Roche, ³Swiss Data Science Center

Issues With One-shot Generation

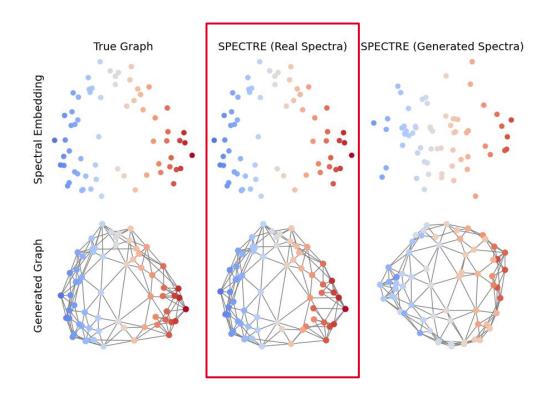
A one-shot generator needs to control the global graph structure by local interactions

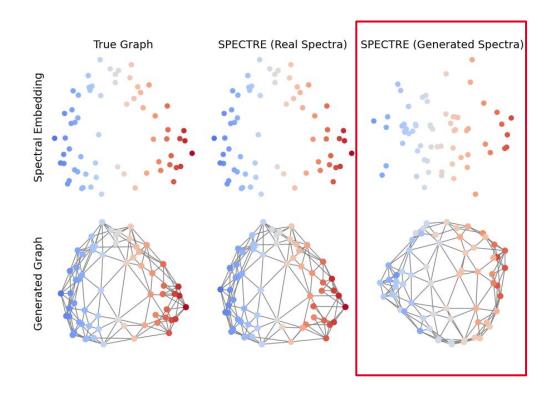

this becomes harder and harder as the graph becomes larger

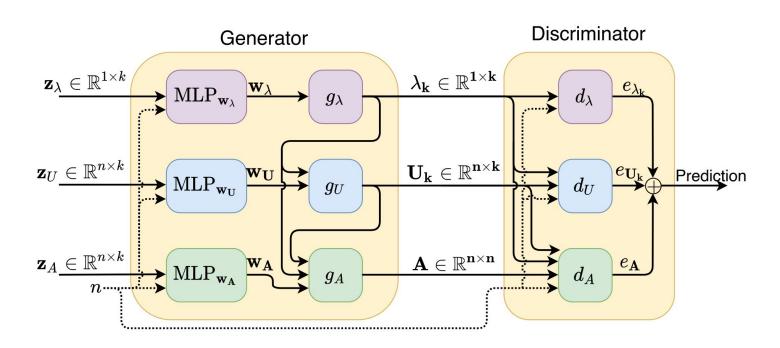
Autoregressive methods avoid this adding only a few nodes at a time.

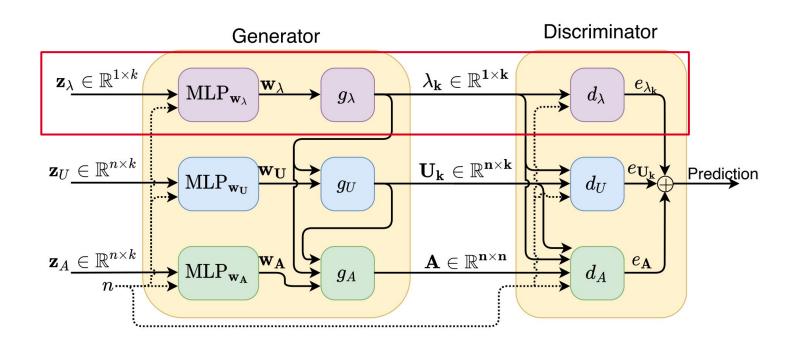


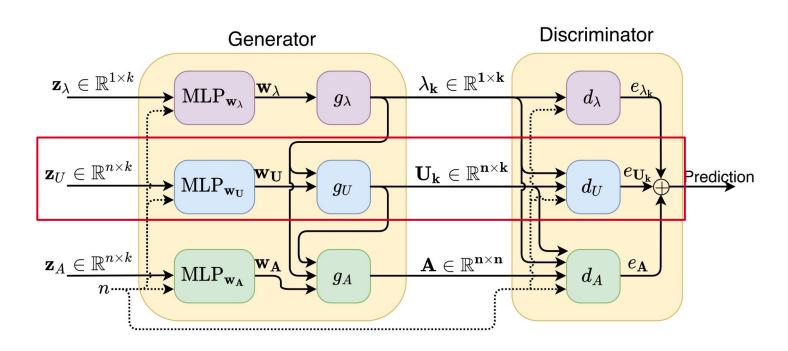

No node can see the cycle without gathering information about the entire graph.

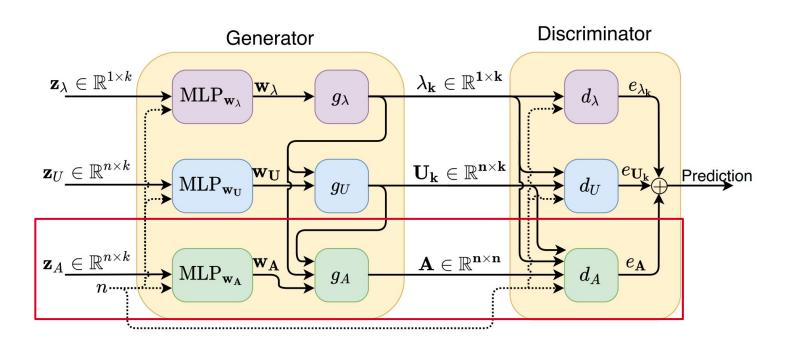

Motivation: Taking Inspiration From Spectral Graph Theory

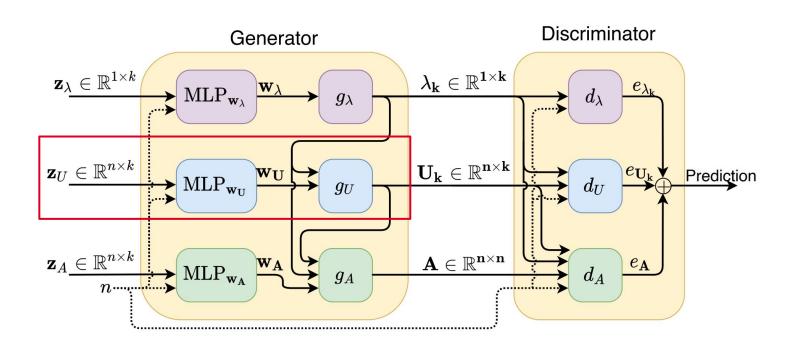



Idea: generate the top-k eigenvectors/values first and use them to condition the graph generator.









$$oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_k = oldsymbol{I}_k \ oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_k \ oldsymbol{U}_k^{(\ell)} = oldsymbol{R}_L^{(\ell)} oldsymbol{U}_k^{(\ell-1)} oldsymbol{R}_R^{(\ell)} \quad ext{for layer} \quad \ell = 1, \cdots, L. \ oldsymbol{R}_L \in \mathbb{R}^{n imes n} \ oldsymbol{R}_L \in \mathbb{R}^{n imes n} \ oldsymbol{R}_L = oldsymbol{I}_n \ oldsymbol{R}_R \in \mathbb{R}^{k imes k} \ oldsymbol{R}_R \in \mathbb{R}^{k imes k} \ oldsymbol{R}_R = oldsymbol{I}_k \ oldsymbol{R}_R = oldsymbol{I}_R = oldsymbol{I}_k \ oldsymbol{R}_R = oldsymbol{R}_R =$$

 $oldsymbol{U}_k \in \mathbb{R}^{n imes k}$

$$oldsymbol{U}_k^{(\ell)} = oldsymbol{R}_L^{(\ell)} oldsymbol{U}_k^{(\ell-1)} oldsymbol{R}_R^{(\ell)} \quad ext{for layer} \quad \ell = 1, \cdots, L.$$

$$egin{aligned} oldsymbol{U}_k \in \mathbb{R}^{n imes k} \ oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_k \end{aligned}$$

$$I_k^{ op}oldsymbol{U}_k=oldsymbol{I}_k$$

$$oldsymbol{R}_L \in \mathbb{R}^{n imes r}$$

$$oldsymbol{R}_L^ op oldsymbol{R}_L = oldsymbol{I}_n$$

$$oldsymbol{R}_{B} \in \mathbb{R}^{k imes k}$$

$$oldsymbol{R}_R \in \mathbb{R}^{k imes k} \ oldsymbol{R}_R^ op oldsymbol{R}_R = oldsymbol{I}_k$$

$$oldsymbol{U}_k^{(\ell)} = oldsymbol{R}_L^{(\ell)} oldsymbol{U}_k^{(\ell-1)} oldsymbol{R}_R^{(\ell)} \quad ext{for layer} \quad \ell = 1, \cdots, L.$$

$$oldsymbol{U}_k \in \mathbb{R}^{n imes k}$$

$$oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_k$$

$$\mathbf{R}_{T} \in \mathbb{R}^{n \times n}$$

$$egin{aligned} oldsymbol{R}_L &\in \mathbb{R}^{n imes n} \ oldsymbol{R}_L^ op oldsymbol{R}_L &= oldsymbol{I}_n \ oldsymbol{R}_R &\in \mathbb{R}^{k imes k} \end{aligned}$$

$$oldsymbol{R}_{B} \in \mathbb{R}^{k imes k}$$

$$oldsymbol{R}_R^ op oldsymbol{R}_R = oldsymbol{I}_k$$

$$m{U}_k^{(\ell)} = m{R}_L^{(\ell)} \, m{U}_k^{(\ell-1)} m{R}_R^{(\ell)}$$
 for layer $\ell=1,\cdots,L$.

$$oldsymbol{U}_k \in \mathbb{R}^{n imes k}$$

$$oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_k$$

$$R_L \in \mathbb{R}^{n \times n}$$

$$oldsymbol{R}_L^ op oldsymbol{R}_L = oldsymbol{I}_n$$

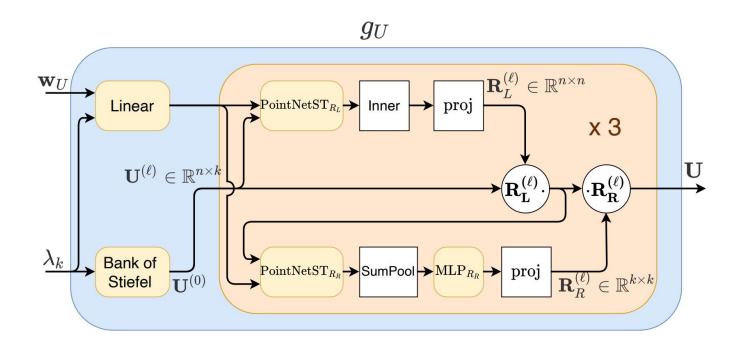
$$oldsymbol{R}_{B} \in \mathbb{R}^{k imes k}$$

$$egin{aligned} oldsymbol{R}_R \in \mathbb{R}^{k imes k} \ oldsymbol{R}_R^ op oldsymbol{R}_R = oldsymbol{I}_k \end{aligned}$$

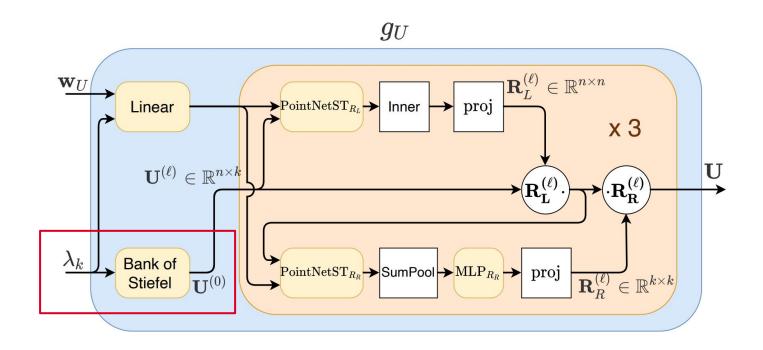
$$oldsymbol{U}_k^{(\ell)} = oldsymbol{R}_L^{(\ell)} oldsymbol{U}_k^{(\ell-1)} oldsymbol{R}_R^{(\ell)} \quad ext{for layer} \quad \ell = 1, \cdots, L.$$

$$oldsymbol{U}_k \in \mathbb{R}^{n imes k}$$

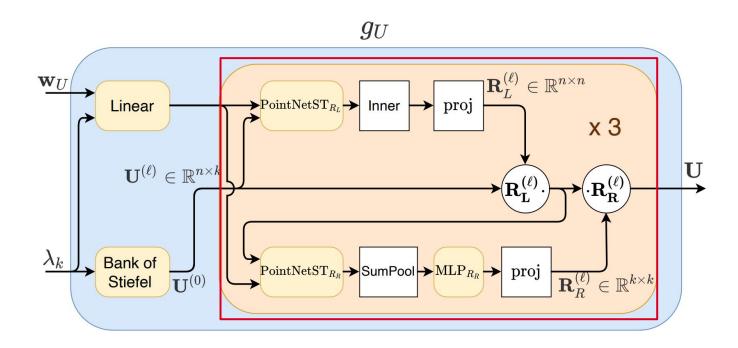
$$oldsymbol{U}_k^ op oldsymbol{U}_k = oldsymbol{I}_k$$


$$\mathbf{R}_{T} \in \mathbb{R}^{n \times n}$$

$$egin{aligned} oldsymbol{R}_L &\in \mathbb{R}^{n imes n} \ oldsymbol{R}_L^ op oldsymbol{R}_L &= oldsymbol{I}_n \ oldsymbol{R}_R &\in \mathbb{R}^{k imes k} \end{aligned}$$


$$oldsymbol{R}_{B} \in \mathbb{R}^{k imes k}$$

$$oldsymbol{R}_R^ op oldsymbol{R}_R = oldsymbol{I}_k$$

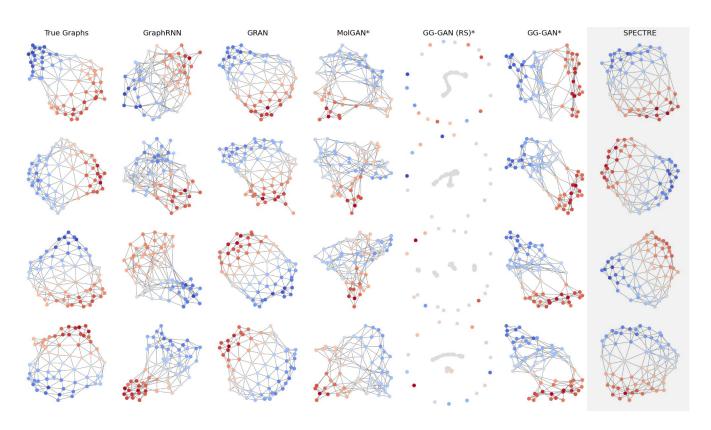

Eigenvector Generator

Eigenvector Generator

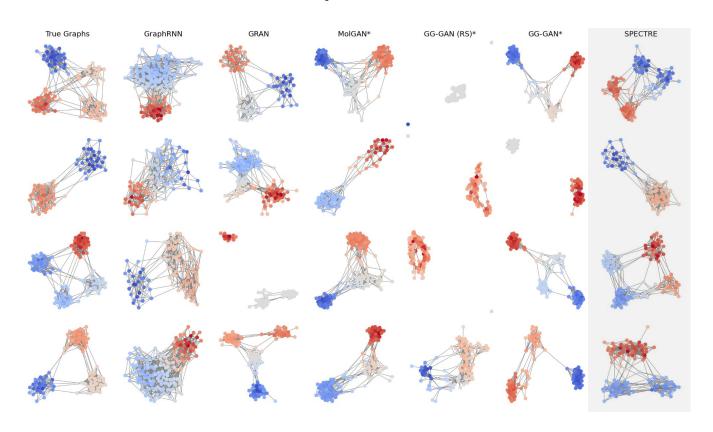
Eigenvector Generator

Some Numbers

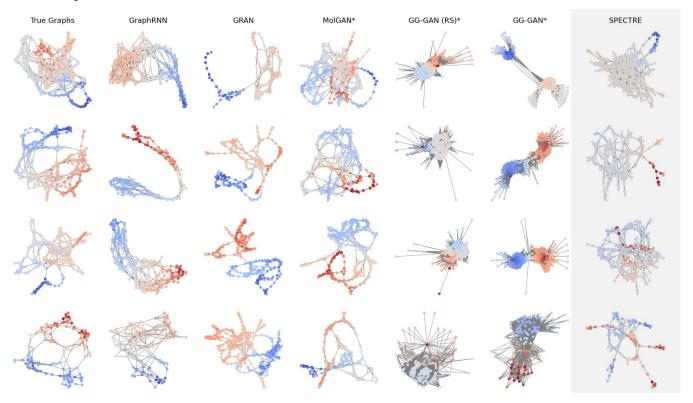
						Plana	ar graphs				
Model	Deg.↓	Clus.↓	Orbit ↓	Spec. ↓	Wavelet ↓	Ratio↓	Valid↑	Unique ↑	Novel ↑	Val., Uniq. & Nov. ↑	<i>t</i> (s) ↓
Training set	0.0002	0.0310	0.0005	0.0052	0.0012	1.0	100.0	100.0	_)	_
GraphRNN GRAN	0.0049 0.0007	0.2779 0.0426	1.2543 0.0009	0.0459 0.0075	0.1034 0.0019	527.4 1.9	0.0 97.5	100.0 85.0	100.0 2.5	0.0 0.0	0.774 0.920
MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE $(k = 2)$	0.0009 0.1005 0.0630 0.0005	0.3164 0.2571 1.1820 0.0785	1.1730 1.0313 1.2280 0.0012	0.1989 0.2040 0.1990 0.0112	0.0729 0.3829 0.1890 0.0059	491.9 586.3 601.0 2.9	0.0 0.0 0.0 25.0	25.0 100.0 10.0 100.0	100.0 100.0 100.0 100.0	0.0 0.0 0.0 25.0	0.002 0.011 0.011 0.026
SPECTRE ($k = 2$, real spectra)	0.0010	0.0668	0.0010	0.0095	0.0056	3.1	47.5 Block Mo	100.0 [‡]	100.0‡	47.5 [‡]	0.011
Model	Deg.↓	Clus.↓	Orbit ↓	Spec.↓	Wavelet ↓	Ratio ↓	Valid↑	Unique ↑	Novel↑	Val., Uniq. & Nov. ↑	$t(s)\downarrow$
Training set	0.0008	0.0332	0.0255	0.0063	0.0007	1.0	100.0	100.0	_	-	_
GraphRNN GRAN	0.0055 0.0113	0.0584 0.0553	0.0785 0.0540	0.0065 0.0054	0.0431 0.0212	14.9 9.8	5.0 25.0	100.0 100.0	100.0 100.0	5.0 25.0	5.108 1.887
MolGAN* GG-GAN (RS)* GG-GAN* SPECTRE (k = 4)	0.0235 0.0338 0.0035 0.0015	0.1161 0.0581 0.0699 0.0521	0.0712 0.1019 0.0587 0.0412	0.0117 0.0613 0.0094 0.0056	0.0292 0.1749 0.0202 0.0028	15.8 61.5 7.8 2.0	10.0 0.0 25.0 52.5	95.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0	9.5 0.0 25.0 52.5	0.002 0.056 0.057 0.074
SPECTRE ($k = 4$, real spectra)	0.0079	0.0528	0.0643	0.0074	0.0112	6.2	60.0	100.0 [‡]	100.0 [‡]	60.0 [‡]	0.057


Some Numbers

						Plana	r graphs				_
Model	Deg.↓	Clus.↓	Orbit ↓	Spec.↓	Wavelet ↓	Ratio↓	Valid↑	Unique ↑	Novel↑	Val., Uniq. & Nov. ↑	t(s)
Training set	0.0002	0.0310	0.0005	0.0052	0.0012	1.0	100.0	100.0	_	- -	_
GraphRNN	0.0049	0.2779	1.2543	0.0459	0.1034	527.4	0.0	100.0	100.0	0.0	0.774
GRAN	0.0007	0.0426	0.0009	0.0075	0.0019	1.9	97.5	85.0	2.5	0.0	0.920
MolGAN*	0.0009	0.3164	1.1730	0.1989	0.0729	491.9	0.0	25.0	100.0	0.0	0.002
GG-GAN (RS)*	0.1005	0.2571	1.0313	0.2040	0.3829	586.3	0.0	100.0	100.0	0.0	0.011
GG-GAN*	0.0630	1.1820	1.2280	0.1990	0.1890	601.0	0.0	10.0	100.0	0.0	0.011
SPECTRE $(k=2)$	0.0005	0.0785	0.0012	0.0112	0.0059	2.9	25.0	100.0	100.0	25.0	0.026
SPECTRE ($k = 2$, real spectra)	0.0010	0.0668	0.0010	0.0095	0.0056	3.1	47.5	100.0 [‡]	100.0‡	47.5 [‡]	0.01
	Stochastic Block Model										
Model	Deg.↓	Clus.↓	Orbit ↓	Spec.↓	Wavelet ↓	Ratio↓	Valid↑	Unique ↑	Novel↑	Val., Uniq. & Nov. ↑	t (s).
Training set	0.0008	0.0332	0.0255	0.0063	0.0007	1.0	100.0	100.0	_	 1	_
GraphRNN	0.0055	0.0584	0.0785	0.0065	0.0431	14.9	5.0	100.0	100.0	5.0	5.108
GRAN	0.0113	0.0553	0.0540	0.0054	0.0212	9.8	25.0	100.0	100.0	25.0	1.88
MolGAN*	0.0235	0.1161	0.0712	0.0117	0.0292	15.8	10.0	95.0	100.0	9.5	0.00
GG-GAN (RS)*	0.0338	0.0581	0.1019	0.0613	0.1749	61.5	0.0	100.0	100.0	0.0	0.05
GG-GAN*	0.0035	0.0699	0.0587	0.0094	0.0202	7.8	25.0	100.0	100.0	25.0	0.05
SPECTRE $(k=4)$	0.0015	0.0521	0.0412	0.0056	0.0028	2.0	52.5	100.0	100.0	52.5	0.07
SPECTRE ($k = 4$, real spectra)	0.0079	0.0528	0.0643	0.0074	0.0112	6.2	60.0	100.0 [‡]	100.0 [‡]	60.0^{\ddagger}	0.05


Some Numbers

						Plana	r graphs				
Model	Deg.↓	Clus.↓	Orbit ↓	Spec. ↓	Wavelet ↓	Ratio↓	Valid↑	Unique ↑	Novel↑	Val., Uniq. & Nov. ↑	<i>t</i> (s) ↓
Training set	0.0002	0.0310	0.0005	0.0052	0.0012	1.0	100.0	100.0	_	-	=
GraphRNN	0.0049	0.2779	1.2543	0.0459	0.1034	527.4	0.0	100.0	100.0	0.0	0.774
GRAN	0.0007	0.0426	0.0009	0.0075	0.0019	1.9	97.5	85.0	2.5	0.0	0.920
MolGAN*	0.0009	0.3164	1.1730	0.1989	0.0729	491.9	0.0	25.0	100.0	0.0	0.002
GG-GAN (RS)*	0.1005	0.2571	1.0313	0.2040	0.3829	586.3	0.0	100.0	100.0	0.0	0.011
GG-GAN*	0.0630	1.1820	1.2280	0.1990	0.1890	601.0	0.0	10.0	100.0	0.0	0.011
SPECTRE $(k=2)$	0.0005	0.0785	0.0012	0.0112	0.0059	2.9	25.0	100.0	100.0	25.0	0.026
SPECTRE ($k = 2$, real spectra)	0.0010	0.0668	0.0010	0.0095	0.0056	3.1	47.5	100.0 [‡]	100.0 [‡]	47.5 [‡]	0.011
	Stochastic Block Model										
Model	Deg.↓	Clus.↓	Orbit ↓	Spec. ↓	Wavelet ↓	Ratio↓	Valid↑	Unique ↑	Novel↑	Val., Uniq. & Nov. ↑	<i>t</i> (s)↓
Training set	0.0008	0.0332	0.0255	0.0063	0.0007	1.0	100.0	100.0	_	-	_
GraphRNN	0.0055	0.0584	0.0785	0.0065	0.0431	14.9	5.0	100.0	100.0	5.0	5.108
GRAN	0.0113	0.0553	0.0540	0.0054	0.0212	9.8	25.0	100.0	100.0	25.0	1.887
MolGAN*	0.0235	0.1161	0.0712	0.0117	0.0292	15.8	10.0	95.0	100.0	9.5	0.002
GG-GAN (RS)*	0.0338	0.0581	0.1019	0.0613	0.1749	61.5	0.0	100.0	100.0	0.0	0.056
GG-GAN*	0.0035	0.0699	0.0587	0.0094	0.0202	7.8	25.0	100.0	100.0	25.0	0.057
SPECTRE $(k=4)$	0.0015	0.0521	0.0412	0.0056	0.0028	2.0	52.5	100.0	100.0	52.5	0.074
SPECTRE ($k = 4$, real spectra)	0.0079	0.0528	0.0643	0.0074	0.0112	6.2	60.0	100.0 [‡]	100.0 [‡]	60.0 [‡]	0.057


Planar Graphs

Stochastic Block Model Graphs

Protein Graphs

Molecular Graphs

Limitations - Potential for Future Work!

- Complex architecture
- Large memory requirements (OOM on 24GB GPU for ~600 node graphs)
- Generating eigenvectors is hard

Dataset	Eigenvalue	Wavelet (true)	Wavelet (fake)		
Planar (k=2)	17.60	45.43	206.15		
SBM (k=4)	9.39	7.01	19.46		
Proteins (k=16)	36.83	4.94	23.42		

Spectral MMD ratios

is hiring!

https://bit.ly/3wtzENf

twitter.com/prescientdesign

Bibliography

- [1] Renjie, et al. "Efficient graph generation with graph recurrent attention networks." NeurIPS 2019.
- [2] Jiaxuan, et al. "GraphRNN: Generating realistic graphs with deep auto-regressive models." ICML 2018.
- [4] De Cao and Kipf. "MolGAN: An implicit generative model for small molecular graphs." 2018.
- [5] Krawczuk et al. "GG-GAN: A Geometric Graph Generative Adversarial Network." 2020.