

Spatial-Channel Token Distillation for Vision MLPs

Yanxi Li^{1,2} Xinghao Chen² Minjing Dong^{1,2} Yehui Tang^{2,3} Yunhe Wang^{2*} Chang Xu^{1*}

¹ School of Computer Science, University of Sydney, Australia
² Huawei Noah's Ark Lab
³ School of Artificial Intelligence, Peking University, China

* Corresponding Authors

Vision MLPs

Vision MLPs typically split an image into small patches and mix features along two dimensions: 1) the **spatial MLP** layers mix feature across different spatial locations and share weights among channels, and 2) the **channel MLP** layers mix features across channels at a given spatial location and share weights among locations:

$$\boldsymbol{U}^{(l)} = \mathrm{MLP}_S^{(l)}(\mathrm{LN}(\boldsymbol{Z}^{(l-1)})) + \boldsymbol{Z}^{(l-1)},$$

$$\boldsymbol{Z}^{(l)} = \mathrm{MLP}_C^{(l)}(\mathrm{LN}(\boldsymbol{U}^{(l)})) + \boldsymbol{U}^{(l)},$$

where l = 1, ..., L are L blocks.

Vision MLPs

- Vision models with pure MLPs are hard to train: MLP-Mixer requires costly pre-training on large-scale datasets, such as ImageNet-21K and JFT-300M.
- One possible way to solve this problem is to design complex architectures: ResMLP, CycleMLP.
- In this work, we seek for another solution: knowledge distillation.

Spatial-channel Token Distillation

Based on the spatial-channel paradigm of Vision MLPs, we propose a novel **Spatial-channel Token Distillation** (STD) mechanism:

$$T_S^{(k)} = \text{MLP}_S^{(k)}(\text{LN}([\boldsymbol{Z}^{(l)}||T_S^{(k-1)}])) + T_S^{(k-1)}$$
$$T_C^{(k)} = \text{MLP}_C^{(k)}(\text{LN}([\boldsymbol{Z}^{(l)}||T_C^{(k-1)}])) + T_C^{(k-1)}$$

Mutual Information Regularization

We design a **Mutual Information Regularization** (MIR) term to disentangle the spatial and channel information. The MI is a measure of dependence between random variables based on the Shannon entropy:

$$I(X;Y) := D_{KL}(\mathbb{P}_{XY}||\mathbb{P}_X \otimes \mathbb{P}_Y),$$

where $D_{KL}(\cdot || \cdot)$ is the KL-divergence.

We use **Mutual Information Neural Estimation** (MINE, Belghazi et al., 2018) to efficiently estimates the MI:

$$I_{\Theta}(X;Y) = \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{XY}} \left[\psi_{\theta} \right] - \log \left(\mathbb{E}_{\mathbb{P}_{X} \otimes \mathbb{P}_{Y}} \left[e^{\psi_{\theta}} \right] \right).$$

The Overall Pipeline

By inserting different number of tokens to different positions, STD is suitable for:

- Single-teacher and multi-teacher distillation;
- Last-layer and intermediate-layer distillation.

Multi-teacher Distillation

	Student			
Archtecture	ResNet-50	ResNet-101	Swin-B/224	Top-1
Params (M)	25.58	44.57	87.77	Acc. (%)
FLOPs (G)	4.36	8.09	15.14	
Selection	✓	×	х	81.47
	×	×	У	81.91
	✓	✓	х	81.96

Distilling with two ResNet teachers can improve the performance of the student model and can reach competitive performance to distilling with a single large Swin Transformer, even though the Swin Transformer has more parameters and FLOPs than the sum of the two ResNet teachers.

Intermediate-layer Distillation

	Student		
Architecture	ResNet-50	ResNet-101	Top-1 Acc. (%)
Position	Last Inter	Last Last	81.96 82.09

By moving one pair of spatial-channel distillation tokens to the intermediate layer of the student model, we can distill the shallow layers with the shallow ResNet-50 teacher and the deep layers with the deep ResNet-101 teacher. This further improves the performance of the student model.

Comparison with SOTAs

Model	Params (M)	FLOPs (G)	Top-1 Acc. (%)
CNN			
ResNet-18 (He et al., 2016)	12.5	1.8	69.8
ResNet-50 (He et al., 2016)	22.0	4.1	78.9
RSB-ResNet-18 (Wightman et al., 2021)	12.5	1.8	71.5
RSB-ResNet-50 (Wightman et al., 2021)	22.0	4.1	80.4
Transformer-based			
ViT-B/16/384 (Dosovitskiy et al., 2021)	86.0	-	77.9
ViT-L/16/384 (Dosovitskiy et al., 2021)	307.0	-	76.5
DeiT-Ti (Touvron et al., 2021b)	6.0	-	74.5
DeiT-S (Touvron et al., 2021b)	22.0	-	81.2
DeiT-B (Touvron et al., 2021b)	87.0	-	83.4
MLP-like			
Mixer-S16 (Tolstikhin et al., 2021)	18.5	3.8	72.9
+ JFT-300M	18.5	3.8	73.8 (+0.9)
+ DeiT Distillation (Touvron et al., 2021b)	20.0	3.8	74.2 (+1.3)
+ STD (ours)	22.2	4.3	75.7 (+2.8)
Mixer-B16 (Tolstikhin et al., 2021)	59.9	12.7	76.4
+ JFT-300M	59.9	12.7	80.0 (+3.6)
+ ImageNet-21K	59.9	12.7	80.6 (+4.2)
+ STD (ours)	66.7	13.7	80.0 (+3.6)
ResMLP-S24 (Touvron et al., 2021a)	30.0	6.0	79.4
+ STD (ours)	32.5	6.2	80.0 (+0.6)
ResMLP-B24 (Touvron et al., 2021a)	115.7	23.0	81.0
+ STD (ours)	122.6	24.1	82.4 (+1.4)
CycleMLP-B1 (Chen et al., 2021)	15.2	2.1	78.9
+ STD (ours)	18.4	2.2	80.0 (+1.1)
CycleMLP-B2 (Chen et al., 2021)	26.8	3.9	81.6
+ DeiT Distillation (Touvron et al., 2021b)	28.6	3.9	81.9 (+0.3)
+ STD (ours)	30.1	4.0	82.1 (+0.5)

We compare Vision MLPs distilled by our STD to CNNs, Transformers, and MLPs with similar number of parameters and FLOPs on the ImageNet-1K dataset. We also report the results of Vision MLPs with large-scale pre-training and DeiT distillation.

- We propose a novel **Spatial-channel Token Distillation** (STD) mechanism specially designed for vision MLPs:
 - adding distillation tokens into both the spatial and channel dimension of MLP blocks to improve the spatial and channel mixing,
 - utilizing a mutual information regularization to disentangle the spatial and channel information.
- STD is suitable for:
 - o last-layer and intermediate-layer distillation,
 - o single-teacher and multi-teacher distillation.

Thank you!

