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Vision MLPs typically split an image into small patches and mix features
along two dimensions: 1) the spatial MLP layers mix feature across
different spatial locations and share weights among channels, and 2) the
channel MLP layers mix features across channels at a given spatial
location and share weights among locations:

where 𝑙 = 1,… , 𝐿 are 𝐿 blocks.
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Figure 2. The overall pipeline of STD.

several explanations of why KD works. Yuan et al. (2019)
explains it from a label smoothing perspective. Wei et al.
(2020) argues KD is equivalent to a data augmentation.

As for multi-teacher distillation, Hinton et al. (2015) simply
uses an averaged response from all teachers. In this way,
every teacher has the same importance. You et al. (2017)
not only uses the responses, but also consider features from
the intermediate layers. Chen et al. (2019) uses different
teachers for different purposes. They use one teacher for
response-based distillation and one teacher for feature-based
distillation. Guo et al. (2019) designs distillation objectives
regarding prediction scores and gradients of examples to en-
hance the robustness of student networks. Chen et al. (2020)
introduces a locality preserving loss to encourage student
networks to generate low-dimensional features inheriting
intrinsic properties from corresponding high-dimensional
teacher’s features. Park & Kwak (2020) and Asif et al.
(2019) add additional teacher branches to the student net-
work to mimic the intermediate features of teachers.

3. Methodology
The proposed STD includes two major components, the
spatial-channel tokens and a mutual information regulariza-
tion on those tokens. We first introduce how the spatial-
channel tokens are combined with MLP-like vision models
and how they participate in the distillation. Then, we de-
scribe a method estimating the mutual information between
the spatial and channel tokens, which is to regularize them
to focus on their specific dimensions. Finally, the overall
pipeline of STD is described, including multi-teacher token
distillation, the token distillation of both the intermediate
layer and last layer, and the overall distillation objective.
The overall pipeline of STD is illustrated in Figure 2.

3.1. Spatial-channel Token Distillation

MLP-like vision models typically split an image into small
patches and mix features along two dimensions: 1) the

spatial MLP layers mix feature across different spatial
locations and share weights among channels, and 2) the
channel MLP layers mix features across channels at a given
spatial location and share weights among locations. Given
the feature Z(l�1) 2 RP⇥N of P patches with N channels,
a MLP-like block can be represented by

U (l) = MLP(l)
S (LN(Z(l�1))) +Z(l�1), (1)

Z(l) = MLP(l)
C (LN(U (l))) +U (l), (2)

where l = 1, . . . , L are L blocks, LN(·) is the layer nor-
malization, and MLP(l)

S and MLP(l)
C are the spatial and

channel MLP layers in block l, respectively. Note, MLP(l)
S

and MLP(l)
C are flexible and are not limited to be the token-

mixing and channel-mixing MLPs in MLP-Mixer, but can
also be other complex MLP layers.

The spatial-channel mixing is a common paradigm widely
existing in various MLP-like vision models (Tolstikhin et al.,
2021; Hou et al., 2021; Touvron et al., 2021a; Chen et al.,
2021; Guo et al., 2022). Based on this fundamental char-
acteristic, we design the spatial-channel tokens for distil-
lation of MLP-like vision models. In a previous work of
Transformer-based vision models, DeiT (Touvron et al.,
2021b) introduces a distillation token by adding an extra
patch after all the image patches. It separates the distillation
objective from the classification objective and improves the
network performance, but it has limitation to be applied to
MLP-like vision models.

MLP-like vision models uses spatial and channel MLP
layers instead of self-attention. If we add a new patch
TS 2 R1⇥N as a spatial token, it interacts with other patches
in the spatial MLP layers:

MLP(l)
S (x0)⇤,j = W 2�(W 1x

0
⇤,j), (3)

where � is an non-linear activation function, x0 2 RP+1⇥N ,
j = 1, . . . , N , and xP+1,⇤ = TS . Equation (3) only allows
TS to capture cross-location features per channel, but cross-
channel features per location are ignored. To capture the
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• Vision models with pure MLPs are hard to train: MLP-Mixer requires costly pre-training on
large-scale datasets, such as ImageNet-21K and JFT-300M.

• One possible way to solve this problem is to design complex architectures: ResMLP, CycleMLP.

• In this work, we seek for another solution: knowledge distillation.

Vision MLPs
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Based on the spatial-channel paradigm of
Vision MLPs, we propose a novel Spatial-
channel Token Distillation (STD) mechanism:
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cross-channel features, we propose a new channel token
TC 2 RP⇥1. It interacts with other channels in the channel
MLP layers:

MLP(l)
C (x00)i,⇤ = W 4�(W 3x

00
i,⇤), (4)

where x00 2 RP⇥N+1, i = 1, . . . , P , and x00
⇤,N+1 = TC .

Using both Equations (3) and (4) allows us to capture per-
channel and per-location features at the same time.

As aforementioned, the classification and distillation ob-
jective are independent. Therefore, we design the spatial-
channel tokens as information aggregator and do not want
them copy information back to the features. This target
can be achieved by slightly modifying weights in Equa-
tions (3) and (4). Let W 1 2 RdS⇥P+1 W 2 2 R1⇥dS

W 3 2 RdC⇥N+1 W 4 2 R1⇥dC , where dS and dC is the
hidden dimension of MLP layers. We can add K MLP
blocks for distillation in parallel with Equations (1) and (2):

T (k)
S = MLP(k)

S (LN([Z(l)||T (k�1)
S ])) + T (k�1)

S (5)

T (k)
C = MLP(k)

C (LN([Z(l)||T (k�1)
C ])) + T (k�1)

C (6)

where Z(l) is the output of a MLP layer l from the original
network, and [·||·] represents concatenation. Finally, the
spatial and channel tokens are concatenated as the final out-
put [T (K)

S ||T (K)
C ] for distillation. The right part of Figure 2

demonstrates how the spatial-channel token works.

There are several differences between our token distillation
for MLPs and the existing token distillation methods for
Transformers, e.g. DeiT (Touvron et al., 2021b). First of all,
Transformers use self-attention and do not consider spatial
and channel differently. Therefore, DeiT uses only spatial
tokens for distillation. However, MLP-like vision models
utilize independent operations for spatial and channel mix-
ing, so we add tokens to both dimensions. Secondly, the
objective of using spatial-channel tokens is to improve the
two kinds of mixing operations. To reach this goal, we fur-
ther design a mutual information regularization to disentan-
gle the spatial and channel information, which encourages
the spatial and channel tokens to extract more informative
features. Finally, DeiT updates the image patches, classi-
fication token, and distillation token together. We update
the patches and distillation tokens separately. The distilla-
tion tokens aggregate information from patches, but do not
copy the information back to them. Patches are passed to
tokens by residual connections and won’t be updated. This
characteristic allows us to insert tokens flexibly and makes
multi-teacher distillation and distillation of intermediate
layers possible.

3.2. Mutual Information Regularization

Although the spatial and channel tokens are separate, they
can share joint information from the features. To make them

focus on their own dimension, we design a MI regulariza-
tion term to disentangle the spatial and channel information.
The MI is a measure of dependence between random vari-
ables based on the Shannon entropy. It is equivalent to the
Kullback-Leibler (KL-) divergence between the joint distri-
bution and the product of the marginal distribution of the
random variables. Given two random variable X and Y , the
MI can be calculated by

I(X;Y ) := DKL(PXY ||PX ⌦ PY ), (7)

where DKL(P||Q) := EP
h
log d P

dQ

i
is the KL-divergence.

The direct calculation of Equation (7) is costly. To efficiently
measure the MI, we use a estimation called mutual informa-
tion neural estimation (MINE) (Belghazi et al., 2018).

Algorithm 1 describes how MINE is used to regularize our
spatial-channel token. MINE uses a statistics network  ✓ :
X ⇥ Y ! R parameterized by ✓ 2 ⇥ to estimate a neural

information measure as

I⇥(X;Y ) = sup
✓2⇥

EPXY [ ✓]� log
�
EPX⌦PY

⇥
e ✓

⇤�
. (8)

Equation (8) is a supremum of expectation, and it can be
empirically calculated by maximizing

1

b

bX

i=1

 ✓(x
(i),y(i))� log(

1

b

bX

i=1

e ✓(x
(i),ȳ(i))) (9)

with gradient ascent on ✓ 2 ⇥, where
�
x(i),y(i)

�
⇠

PXY , i = 1, . . . , b are samples from a joint distribution
of X and Y , and ȳ(i) ⇠ PY , i = 1, . . . , b are samples from
a marginal distribution of Y . In practice, we use paired
spatial and channel tokens (T (i)

S ,T (i)
C ) from the image xi

as the joint distribution and use unpaired tokens (T (i)
S ,T (j)

C )
from random images xi and xj as the marginal distribu-
tion. Then, we can minimize Equation (9) by optimizing
the spatial-channel token for minimal mutual information.

3.3. The Overall Pipeline of STD

Multi-teacher Distillation with Tokens. Distillation with
multiple teachers has turned out to be effective to improve
the performance of student than using a single teacher (Hin-
ton et al., 2015; Sau & Balasubramanian, 2016; You et al.,
2017), because different teacher networks can provide their
unique information. We also consider multi-teacher distil-
lation with our spatial-channel tokens. To achieve multi-
teacher distillation, we only need to add extra tokens into
Equations (5) and (6). This allows each teacher to cor-
respond to a specific latent representation in the student
network. An intuitive way to utilize those teachers is us-
ing the averaged response from them (Hinton et al., 2015).
However, we argue that different teachers have various im-
portance. Therefore, we further introduce an entropy-based
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We design a Mutual Information Regularization (MIR) term to disentangle the spatial and
channel information. The MI is a measure of dependence between random variables based on the
Shannon entropy:

where 𝐷!" ⋅ || ⋅ is the KL-divergence.

We use Mutual Information Neural Estimation (MINE, Belghazi et al., 2018) to efficiently
estimates the MI:

Mutual Information Regularization

Spatial-Channel Token Distillation for Vision MLPs

cross-channel features, we propose a new channel token
TC 2 RP⇥1. It interacts with other channels in the channel
MLP layers:

MLP(l)
C (x00)i,⇤ = W 4�(W 3x

00
i,⇤), (4)

where x00 2 RP⇥N+1, i = 1, . . . , P , and x00
⇤,N+1 = TC .

Using both Equations (3) and (4) allows us to capture per-
channel and per-location features at the same time.

As aforementioned, the classification and distillation ob-
jective are independent. Therefore, we design the spatial-
channel tokens as information aggregator and do not want
them copy information back to the features. This target
can be achieved by slightly modifying weights in Equa-
tions (3) and (4). Let W 1 2 RdS⇥P+1 W 2 2 R1⇥dS

W 3 2 RdC⇥N+1 W 4 2 R1⇥dC , where dS and dC is the
hidden dimension of MLP layers. We can add K MLP
blocks for distillation in parallel with Equations (1) and (2):

T (k)
S = MLP(k)

S (LN([Z(l)||T (k�1)
S ])) + T (k�1)

S (5)

T (k)
C = MLP(k)

C (LN([Z(l)||T (k�1)
C ])) + T (k�1)

C (6)

where Z(l) is the output of a MLP layer l from the original
network, and [·||·] represents concatenation. Finally, the
spatial and channel tokens are concatenated as the final out-
put [T (K)

S ||T (K)
C ] for distillation. The right part of Figure 2

demonstrates how the spatial-channel token works.

There are several differences between our token distillation
for MLPs and the existing token distillation methods for
Transformers, e.g. DeiT (Touvron et al., 2021b). First of all,
Transformers use self-attention and do not consider spatial
and channel differently. Therefore, DeiT uses only spatial
tokens for distillation. However, MLP-like vision models
utilize independent operations for spatial and channel mix-
ing, so we add tokens to both dimensions. Secondly, the
objective of using spatial-channel tokens is to improve the
two kinds of mixing operations. To reach this goal, we fur-
ther design a mutual information regularization to disentan-
gle the spatial and channel information, which encourages
the spatial and channel tokens to extract more informative
features. Finally, DeiT updates the image patches, classi-
fication token, and distillation token together. We update
the patches and distillation tokens separately. The distilla-
tion tokens aggregate information from patches, but do not
copy the information back to them. Patches are passed to
tokens by residual connections and won’t be updated. This
characteristic allows us to insert tokens flexibly and makes
multi-teacher distillation and distillation of intermediate
layers possible.

3.2. Mutual Information Regularization

Although the spatial and channel tokens are separate, they
can share joint information from the features. To make them

focus on their own dimension, we design a MI regulariza-
tion term to disentangle the spatial and channel information.
The MI is a measure of dependence between random vari-
ables based on the Shannon entropy. It is equivalent to the
Kullback-Leibler (KL-) divergence between the joint distri-
bution and the product of the marginal distribution of the
random variables. Given two random variable X and Y , the
MI can be calculated by

I(X;Y ) := DKL(PXY ||PX ⌦ PY ), (7)

where DKL(P||Q) := EP
h
log d P
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is the KL-divergence.

The direct calculation of Equation (7) is costly. To efficiently
measure the MI, we use a estimation called mutual informa-
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. (8)

Equation (8) is a supremum of expectation, and it can be
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�
⇠

PXY , i = 1, . . . , b are samples from a joint distribution
of X and Y , and ȳ(i) ⇠ PY , i = 1, . . . , b are samples from
a marginal distribution of Y . In practice, we use paired
spatial and channel tokens (T (i)

S ,T (i)
C ) from the image xi

as the joint distribution and use unpaired tokens (T (i)
S ,T (j)

C )
from random images xi and xj as the marginal distribu-
tion. Then, we can minimize Equation (9) by optimizing
the spatial-channel token for minimal mutual information.

3.3. The Overall Pipeline of STD

Multi-teacher Distillation with Tokens. Distillation with
multiple teachers has turned out to be effective to improve
the performance of student than using a single teacher (Hin-
ton et al., 2015; Sau & Balasubramanian, 2016; You et al.,
2017), because different teacher networks can provide their
unique information. We also consider multi-teacher distil-
lation with our spatial-channel tokens. To achieve multi-
teacher distillation, we only need to add extra tokens into
Equations (5) and (6). This allows each teacher to cor-
respond to a specific latent representation in the student
network. An intuitive way to utilize those teachers is us-
ing the averaged response from them (Hinton et al., 2015).
However, we argue that different teachers have various im-
portance. Therefore, we further introduce an entropy-based
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cross-channel features, we propose a new channel token
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i,⇤), (4)
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Using both Equations (3) and (4) allows us to capture per-
channel and per-location features at the same time.
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jective are independent. Therefore, we design the spatial-
channel tokens as information aggregator and do not want
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can be achieved by slightly modifying weights in Equa-
tions (3) and (4). Let W 1 2 RdS⇥P+1 W 2 2 R1⇥dS
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where Z(l) is the output of a MLP layer l from the original
network, and [·||·] represents concatenation. Finally, the
spatial and channel tokens are concatenated as the final out-
put [T (K)

S ||T (K)
C ] for distillation. The right part of Figure 2

demonstrates how the spatial-channel token works.

There are several differences between our token distillation
for MLPs and the existing token distillation methods for
Transformers, e.g. DeiT (Touvron et al., 2021b). First of all,
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tokens for distillation. However, MLP-like vision models
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ing, so we add tokens to both dimensions. Secondly, the
objective of using spatial-channel tokens is to improve the
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tokens by residual connections and won’t be updated. This
characteristic allows us to insert tokens flexibly and makes
multi-teacher distillation and distillation of intermediate
layers possible.

3.2. Mutual Information Regularization

Although the spatial and channel tokens are separate, they
can share joint information from the features. To make them

focus on their own dimension, we design a MI regulariza-
tion term to disentangle the spatial and channel information.
The MI is a measure of dependence between random vari-
ables based on the Shannon entropy. It is equivalent to the
Kullback-Leibler (KL-) divergence between the joint distri-
bution and the product of the marginal distribution of the
random variables. Given two random variable X and Y , the
MI can be calculated by

I(X;Y ) := DKL(PXY ||PX ⌦ PY ), (7)

where DKL(P||Q) := EP
h
log d P

dQ

i
is the KL-divergence.

The direct calculation of Equation (7) is costly. To efficiently
measure the MI, we use a estimation called mutual informa-
tion neural estimation (MINE) (Belghazi et al., 2018).

Algorithm 1 describes how MINE is used to regularize our
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X ⇥ Y ! R parameterized by ✓ 2 ⇥ to estimate a neural
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PXY , i = 1, . . . , b are samples from a joint distribution
of X and Y , and ȳ(i) ⇠ PY , i = 1, . . . , b are samples from
a marginal distribution of Y . In practice, we use paired
spatial and channel tokens (T (i)

S ,T (i)
C ) from the image xi

as the joint distribution and use unpaired tokens (T (i)
S ,T (j)

C )
from random images xi and xj as the marginal distribu-
tion. Then, we can minimize Equation (9) by optimizing
the spatial-channel token for minimal mutual information.

3.3. The Overall Pipeline of STD

Multi-teacher Distillation with Tokens. Distillation with
multiple teachers has turned out to be effective to improve
the performance of student than using a single teacher (Hin-
ton et al., 2015; Sau & Balasubramanian, 2016; You et al.,
2017), because different teacher networks can provide their
unique information. We also consider multi-teacher distil-
lation with our spatial-channel tokens. To achieve multi-
teacher distillation, we only need to add extra tokens into
Equations (5) and (6). This allows each teacher to cor-
respond to a specific latent representation in the student
network. An intuitive way to utilize those teachers is us-
ing the averaged response from them (Hinton et al., 2015).
However, we argue that different teachers have various im-
portance. Therefore, we further introduce an entropy-based
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By inserting different number of tokens to different positions, STD is suitable for:
• Single-teacher and multi-teacher distillation;
• Last-layer and intermediate-layer distillation.

The Overall Pipeline
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Table 3. The top-1 accuracy on ImageNet-1K of CycleMLP-B2
distilled with various selections of teachers.

Teachers Student

Archtecture ResNet-50 ResNet-101 Swin-B/224 Top-1
Acc. (%)Params (M) 25.58 44.57 87.77

FLOPs (G) 4.36 8.09 15.14

Selection
3 7 7 81.47
7 7 3 81.91
3 3 7 81.96

also compare to Transformer-based vision models both with
and without distillation. The results are reported in Table 2.

Compared to MLP-Mixers, models distilled with our STD
without additional datasets obtain consistently better perfor-
mance. With the proposed STD, Mixer-S16 can reach 75.7%
top-1 accuracy, which is 1.0% higher than the model pre-
trained on JFT-300M. As for Mixer-B16 with STD, it can
reach 80.0%, which is higher than the models pre-trained
on ImageNet-1K and JFT-300M and is competitive to the
model pre-trained on ImageNet-21K. Besides, we find that
if there is no pre-training, even though Mixer-S16 is 3 times
smaller than Mixer-B16 in terms of FLOPs and parameters,
Mixer-S16+STD can still reach a competitive performance
to Mixer-B16 trained from scratch. It demonstrates the
difficulty of optimizing MLP-Mixers from scratch and the
effectiveness of our STD.

As for stronger architectures, e.g. ResMLP and CycleMLP,
if Mixer-B16 is pre-trained on ImageNet-1K instead of
the two large datasets, JFT-300M and ImageNet-21K, the
performance of it is consistently lower than ResMLP and
CycleMLP regardless of the model size. By distilling
Mixer-B16 with STD, it can outperform ResMLP-S24 nad
CycleMLP-B1 and reach very close to ResMLP-B24 and
CycleMLP-B2. When applying to ResMLP and CycleMLP,
STD can further improve their performance. Among
them, STD reaches the maximal accuracy gain of 1.1%
on CycleMLP-B1.

Compared with DeiT, it can improve the accuracy of Mixer-
S16 to 74.2%, which is still lower than DeiT-Ti. In contrast,
STD can improve Mixer-S16 to be better than DeiT-Ti by
1.2%. The larger MLP-Mixer, Mixer-B16, performs lower
than both ViTs. When applying STD to it, it can reach
2.1% and 3.5% higher accuracy than ViT-B/16/384 and
ViT-L/16/384, respectively.

4.3. Distillation Settings

In this subsection, we discuss our distillation setting, in-
cluding the selection of teachers, the spatial-channel tokens,
the distillation of the intermediate layer, and the manner of
prediction. We use the CycleMLP-B2 as the student, whose

Table 4. The top-1 accuracy on ImageNet-1K of CycleMLP-B2
distilled with and without the propsoed spatial-channel tokens.

Teachers S+C
Tokens

Student

ResNet-50 ResNet-101 Top-1
Acc. (%)

3 7 7 81.40
3 7 3 81.47
3 3 7 81.89
3 3 3 81.96

accuracy is the best among our models in Table 2.

Different Teachers. We first consider the selection of
teachers for STD. There are three different options in Ta-
ble 3, including a small teacher (i.e. ResNet-50), a large
teacher (i.e. Swin-B/224), and the combination of two small
teachers (i.e. ResNet-50 and ResNet-101). Even though it
is no surprise that the large Swin-B/224 can distill a better
student than the small ResNet-50, we find the combination
of two small teachers can reach competitive performance
to one large teacher. The Swin-B/224 has 87.77M parame-
ters and 15.14G FLOPs, yet the combination of ResNet-50
and ResNet-101 only has 70.15M parameters and 12.45G
FLOPs. Besides, both of the two ResNets have lower accu-
racy than Swin-B/224 (79.6% and 80.7% vs. 85.2%). Nev-
ertheless, distilling with the two ResNets reaches 81.96%
top-1 accuracy on ImageNet-1K, which is slightly higher
than the accuracy by distilling with Swin-B/224.

Besides, we find the student network can outperform its
teachers by distilling with ResNet-50 or the combination of
two ResNets. Although Swin-B/224 has higher accuracy
than both of the ResNets, its student has much lower per-
formance than it. This advantage does not maximize the
benefit of its student. We argue this could be caused by the
huge gap between the model sizes of CycleMLP-B2 and
Swin-B/224. The student only has 30.1M parameters and
4.0G FLOPs, which is about three times smaller than the
teacher.

Spatial-channel Tokens. Then, we study the impacts of
our spatial-channel token, under both single teacher distilla-
tion and multi-teacher distillation. ResNet-50 is used for the
single teacher distillation, and the combination of ResNet-
50 and ResNet-101 is used for the multi-teacher distillation.
As can be seen in Table 4, the spatial-channel tokens can
obtain consistent performance gains.

Intermediate Layer Distillation. We evaluate the inter-
mediate layer distillation. Instead of distilling different
layers with the same teacher, we consider the multi-teacher
setting, whose performance is the best in Table 3. We use the

Distilling with two ResNet teachers can improve the
performance of the student model and can reach
competitive performance to distilling with a single
large Swin Transformer, even though the Swin
Transformer has more parameters and FLOPs than
the sum of the two ResNet teachers.

Multi-teacher Distillation
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Table 5. The top-1 accuracy on ImageNet-1K of CycleMLP-B2
distilled at the last layer and at multiple positions.

Teachers Student

Architecture ResNet-50 ResNet-101 Top-1
Acc. (%)

Position Last Last 81.96
Inter Last 82.09

Table 6. Ablation study on using different prediction methods, in-
cluding using the averaged response, using the classification head,
and using distillation heads.

Model No Dist Mean Class Head Dist Head

Mixer-S16 72.9 75.74 75.40 (-0.34) 75.70 (-0.04)
Mixer-B16 76.4 80.05 78.78 (-1.27) 80.05 (-0.00)
CycleMLP-B1 78.9 79.96 79.59 (-0.37) 79.92 (-0.04)
CycleMLP-B2 81.6 82.11 82.01 (-0.10) 81.97 (-0.14)

ResNet-50 to distill the intermediate layer and the ResNet-
101 to distill the last layer. The intermediate distillation
tokens are inserted into the 2/3 position of the network.
Table 5 demonstrates distilling both the intermediate layer
and last layer can improve the accuracy by 0.13%.

Prediction Heads. As aforementioned, we follow DeiT
(Touvron et al., 2021b) and use the averaged response from
the classification head and distillation heads. We also per-
form an ablation study to evaluate this prediction manner
with both MLP-Mixer and CycleMLP. The results are re-
ported in Table 6. As can be seen, the accuracy always
drops whether the classification head or distillation heads
are used alone. Although the distillation heads perform
better than the classification head in most cases, neither of
them is necessarily better. A possible explanation of this
phenomenon is that the classification head learns ground-
truth labels, and distillation heads learn teachers’ outputs.
They can learn different hypothesis. Using them together
is similar to ensemble learning, which can improve the pre-
dictive performance. It is also worth noting that both of
the heads in networks distilled by STD can reach a better
performance than the networks without distillation, which
demonstrates the effectiveness of STD.

4.4. Spatial-channel Token Distillation

We perform ablation studies on different components in
STD, including the teachers’ confidence, spatial-channel to-
kens, and mutual information regularization. Models trained
from scratch and pre-trained on JFT-300M are considered
as baselines. The results are reported in Table 7. In this ex-
periment, we use Mixer-S16 as the student and distill it with

the two default CNN teachers in our work, i.e. ResNet-50
and ResNet-101.

Teachers’ Confidence Weights. We first consider the
teachers’ confidence weights, which can always be applied
to multi-teacher distillation regardless of the use of tokens.
Whether distilling without any token, with spatial tokens,
or with spatial-channel tokens, the confidence weights can
always increase the accuracy by around 0.12% to 0.14%.

Distillation Tokens. As for the distillation tokens, we
consider three different settings: distilling without any to-
ken, distilling with spatial tokens only, and distilling with
our spatial-channel tokens. Firstly, we find even vanilla
distillation can indeed improve the performance of MLP-
Mixer. By distilling without any token, the accuracy is
increased by 1.11% compared to pre-training on JFT-300M
and 2.07% compared to training from scratch. However, dis-
tilling with spatial tokens only reduces the performance gain.
By adding spatial tokens, the accuracy drops 0.26%. Our
spatial-channel token can improve the accuracy by 0.72%
and reach 75.66%. This is an increase of 1.83% compared
to JFT-300M and 2.79% compared to from scratch.

Besides, we also find the classification token can harm the
performance of MLP-like vision models, even though it
works well in DeiT. Distilling with spatial tokens in this
experiment is similar to DeiT, but we use a GAP before the
classification head instead of a classification token like them.
Comparing with the accuracy of Mixer-S16 distilled with the
DeiT’s distillation method reported in Table 2, Mixer-S16
can reach 75.56% top-1 accuracy with spatial distillation
token and GAP classification head, which is about 0.4%
higher than the former.

Mutual Information Regularization. Because the mu-
tual information regularization is between the spatial and
channel tokens, it does not apply to distillation without any
token or with the spatial tokens only. Therefore, we mainly
study its impacts on STD. As can be seen, the accuracy of
STD can further increase to 75.74%, which is 1.91% higher
than the pre-training on JFT-300M. The computational cost
of MINE is also marginal. We use a three-layer MLP with
512 dimensions as the MINE network. It has only 0.003G
FLOPs and 0.84M parameters, which is much smaller than
the models.

5. Conclusion
In this work, we propose a distillation mechanism designed
for MLP-like vision models, namely Spatial-channel Token
Distillation (STD). STD adds distillation tokens into both
the spatial and channel dimension of MLP blocks. Those
tokens are designed to improve the spatial and channel mix-

Intermediate-layer Distillation

By moving one pair of spatial-channel distillation
tokens to the intermediate layer of the student model,
we can distill the shallow layers with the shallow
ResNet-50 teacher and the deep layers with the deep
ResNet-101 teacher. This further improves the
performance of the student model.
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Table 2. Comparison between STD and SOTA methods. We compare models distilled by STD with models trained from scratch on
ImageNet-1K and models pre-trained on large-scale datasets and then fine-tuned on ImageNet-1K.

Model Params (M) FLOPs (G) Top-1 Acc. (%)

CNN

ResNet-18 (He et al., 2016) 12.5 1.8 69.8
ResNet-50 (He et al., 2016) 22.0 4.1 78.9
RSB-ResNet-18 (Wightman et al., 2021) 12.5 1.8 71.5
RSB-ResNet-50 (Wightman et al., 2021) 22.0 4.1 80.4

Transformer-based

ViT-B/16/384 (Dosovitskiy et al., 2021) 86.0 - 77.9
ViT-L/16/384 (Dosovitskiy et al., 2021) 307.0 - 76.5
DeiT-Ti (Touvron et al., 2021b) 6.0 - 74.5
DeiT-S (Touvron et al., 2021b) 22.0 - 81.2
DeiT-B (Touvron et al., 2021b) 87.0 - 83.4

MLP-like

Mixer-S16 (Tolstikhin et al., 2021) 18.5 3.8 72.9
+ JFT-300M 18.5 3.8 73.8 (+0.9)
+ DeiT Distillation (Touvron et al., 2021b) 20.0 3.8 74.2 (+1.3)
+ STD (ours) 22.2 4.3 75.7 (+2.8)
Mixer-B16 (Tolstikhin et al., 2021) 59.9 12.7 76.4
+ JFT-300M 59.9 12.7 80.0 (+3.6)
+ ImageNet-21K 59.9 12.7 80.6 (+4.2)
+ STD (ours) 66.7 13.7 80.0 (+3.6)

ResMLP-S24 (Touvron et al., 2021a) 30.0 6.0 79.4
+ STD (ours) 32.5 6.2 80.0 (+0.6)
ResMLP-B24 (Touvron et al., 2021a) 115.7 23.0 81.0
+ STD (ours) 122.6 24.1 82.4 (+1.4)

CycleMLP-B1 (Chen et al., 2021) 15.2 2.1 78.9
+ STD (ours) 18.4 2.2 80.0 (+1.1)
CycleMLP-B2 (Chen et al., 2021) 26.8 3.9 81.6
+ DeiT Distillation (Touvron et al., 2021b) 28.6 3.9 81.9 (+0.3)
+ STD (ours) 30.1 4.0 82.1 (+0.5)

4.1. Setup

Datasets. We use the ImageNet-1K (Russakovsky et al.,
2015) dataset for both distillation and evaluation. It has 1.3
million images covering 1,000 classes. One of our baselines,
MLP-Mixer, uses additional datasets, including ImageNet-
21K and JFT-300M (Sun et al., 2017), for pre-training.
ImageNet-21K is a superset of ImageNet-1K, which con-
tains 14 million images covering 21,000 classes. JFT-300M
is a private dataset, which contains 300 million images cov-
ering 18,000 classes. We do not use any extra images or
labels from them.
Student Networks. We evaluate STD with various MLP-
like architectures, including MLP-Mixer (Tolstikhin et al.,
2021), ResMLP (Touvron et al., 2021a) and CycleMLP
(Chen et al., 2021). Each architecture has multiple vari-
ants, we compare the variants with a similar throughput.
The throughput is tested on ImageNet-1K with 8⇥NVIDIA
V100 GPUs and is listed in Table 1. The first group in-
cludes Mixer-S16, ResMLP-S24, and CycleMLP-B1, and

the second group includes Mixer-B16, ResMLP-B24, and
CycleMLP-B2.

Teacher Networks. We mainly use CNNs as the teacher
networks. We consider two variants of ResNet (He et al.,
2016), including ResNet-50 and ResNet-101. They have
79.6% and 80.7% top-1 accuracy on ImageNet-1K, respec-
tively. We also perform an ablation study by distilling with
a Transformer-based vision model, Swin-Transformer (Liu
et al., 2021), as a teacher. We use Swin-B pre-trained on
ImageNet-22K with the identical 224 ⇥ 224 resolution to
ResNets. It has 85.2% top-1 accuracy on ImageNet-1K.

4.2. Comparison with State-of-the-Art Methods

We compare with three kinds of SOTA MLP-like vision
models, including models trained from scratch on ImageNet-
1K, models pre-trained with large-scale datasets (e.g., JFT-
300M and ImageNet-21K) and fine-tuned on ImageNet-1K,
and models distilled with prior methods, such as DeiT. We

We compare Vision MLPs distilled by our STD to
CNNs, Transformers, and MLPs with similar number
of parameters and FLOPs on the ImageNet-1K
dataset. We also report the results of Vision MLPs
with large-scale pre-training and DeiT distillation.

Comparison with SOTAs
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• We propose a novel Spatial-channel Token Distillation (STD) mechanism specially
designed for vision MLPs:
o adding distillation tokens into both the spatial and channel dimension of MLP
blocks to improve the spatial and channel mixing,

o utilizing a mutual information regularization to disentangle the spatial and
channel information.

• STD is suitable for:
o last-layer and intermediate-layer distillation,
o single-teacher and multi-teacher distillation.

Conclusion
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