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Fluid Dynamics Grounding

Inferring the physical dynamics of fluids from visual observations
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Progress in Learning Fluid Dynamics
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An Open Question
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NeuroFluid: A Fully Differentiable Framework

Inferring fluid dynamics only using the supervision of visual observation.
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NeuroFluid: A Fully Differentiable Framework
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(1) a particle transition model Tg;
(2) a particle-driven renderer R,
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Consists of
(1) a particle transition model Tg;
(2) a particle-driven renderer R,

Jointly optimizing them as:

(1) Transition: s;,; < Tg(s;), Where s
IS particle positions and velocities.

(2) Rendering: [;11 «— Rp(S¢41, d)

(3) Contrasting: ||I;4+1 — It41], then
backward.



NeuroFluid: A Fully Differentiable Framework
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PhysNeRF: Particle-Driven Neural Radiance Fields

Linking Neural Radiance Fields with physical particles.
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PhysNeRF: Particle-Driven Neural Radiance Fields

Linking Neural Radiance Fields with physical particles.
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Particle Transition Model
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P, particle positions
V.: particle velocity



Particle Transition Model

Py, Vo — P,Vy — - — Pp, V7

P;: particle positions
V.. particle velocity
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Results

Fluid dynamics grounding is evaluated from
(1)Accuracy of grounded particle position
(2)Accuracy of predicted particle position
(3)Novel view synthesis.



Results

Fluid dynamics grounding is evaluated from
(1)Accuracy of grounded particle position
(2)Accuracy of predicted particle position
(3)Novel view synthesis.

Table 1. Typical geometric and physical properties of fluids on the evaluation benchmarks, which are closely related to the simulation and
rendering of dynamic scenes. On “WaterBunny”, we evaluate the generalization ability of PhysNeRF to novel particle distributions.

BENCHMARK INITIAL SHAPE MATERIAL VISCOSITY DENSITY (KG/M?)
HONEYCONE CONE PRINCIPLED BSDF 0.8 1420
WATERCUBE CUBE GLASS BSDF 0.08 1000
WATERSPHERE SPHERE GLASS BSDF 0.08 1000

WATERBUNNY STANFORDBUNNY GLASS BSDF 0.08 1000




Results of Fluid Dynamics Grounding

Compared models

(1) DLF: it has the same network structure as NeuroFluid.
(2) DLF' : it is finetuned with true particle state in the evaluation benchmarks.

Table 2. Quantitative results on the errors of fluid dynamics grounding (¢ < 50) and prediction (50 < ¢ < 60), which are calculated

between the grounded/predicted particle positions and the ground truth provided by the fluid simulator (lower is better). For DLFT, the
transition model is finetuned on the testing benchmarks in a fully supervised way, that is, using true particle positions at ¢ < 50.

WATERCUBE WATERSPHERE HONEYCONE
METHOD GROUNDING PREDICTION GROUNDING PREDICTION GROUNDING PREDICTION
AVG d . AVG d . AVG d . AVG d . AVG d . AVG d .
t<50 t=49 t>50 t=>59 t<50 t=49 t>50 t=>59 t<50 t=49 t>50 t=59
DLF 32.3 48.3 47.4 46.2 32.2 47.6 48.1 45.9 61.5 83.5 69.7 57.8
NEUROFLUID 28.8 34.9 35.5 36.7 31.1 31.5 30.7 30.4 30.9 47.5 54.2 58.2
DLFf 28.1 28.1 30.9 34.4 30.0 28.5 30.0 31.8 34.3 66.1 72.6 77.6




Results of Fluid Dynamics Prediction

Compared models
(1) DLF: it has the same network structure as NeuroFluid.
(2) DLF' : it is finetuned with true particle state in the evaluation benchmarks.

Table 2. Quantitative results on the errors of fluid dynamics grounding (¢ < 50) and prediction (50 < ¢ < 60), which are calculated
between the grounded/predicted particle positions and the ground truth provided by the fluid simulator (lower is better). For DLFT, the

transition model is finetuned on the testing benchmarks in a fully supervised way, that is, using true particle positions at ¢ < 50.

WATERCUBE WATERSPHERE HONEYCONE
METHOD GROUNDING PREDICTION GROUNDING PREDICTION GROUNDING PREDICTION
AVG d . AVG d . AVG d . AVG d . AVG d . AVG d .
t<50 t=49 t>50 t=>59 t<50 t=49 t>50 t=>59 t<50 t=49 t>50 t=59
DLF 32.3 48.3 47.4 46.2 32.2 47.6 48.1 45.9 61.5 83.5 69.7 57.8
NEUROFLUID 28.8 34.9 35.5 36.7 31.1 31.5 30.7 30.4 30.9 47.5 54.2 58.2
DLFf 28.1 28.1 30.9 34.4 30.0 28.5 30.0 31.8 34.3 66.1 72.6 77.6




Qualitative Results of Fluid Dynamics Grounding and Prediction
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Results of Novel View Synthesis

NeRF-based comparisons: (1) D-NeRF (Pumarola et al., 2021), (2) NeRF-T
(NeRF+time index), and (3) the 3D-aware fluid renderer from Li et al. (2022):
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Li et al. (2022)
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Results of Rendering Novel Fluid Scenes

We use a pretrained PhysNeRF model to render a novel water scene with the
initial shape of Stanford Bunny
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Results of Unknown Initial Particle Positions.

Table 5. Experiments on WaterCube with unknown initial particle states and ablation studies of neighborhood encoding (Rows 3-6).

MODEL AG\/(I}(OUNDING PI:,I}}EDICTION NOVEL VIEW SYNTHESIS
t< 50 di—49 £>50 di=59 PSNRT SSIM+ LPIPS]

FULL MODEL 28.8 34.9 35.5 36.7 30.76 0.95 0.09
UNKNOWN INITIAL PARTICLE POSITIONS 35.6 27.2 26.6 26.3 29.21 0.94 0.12
w/o FICTITIOUS PARTICLES CENTER (p,) 37.2 40.7 41.3 42.9 28.41 0.94 0.12
w/o SPHERE DENSITY (o) 31.2 37.9 39.3 394 29.65 0.95 0.10
w/o0 DEFORMATION VECTOR (vp) 33.0 38.1 40.5 42.1 28.91 0.95 0.11
w/o PARTICLE-RELATIVE DIRECTION (d.) 32.2 39.8 43.9 47.0 29.56 0.95 0.10




Ablation Studies on Neighborhood Encoding

Table 5. Experiments on WaterCube with unknown initial particle states and ablation studies of neighborhood encoding (Rows 3-6).

MODEL AG\/(I}(OUNDING PI:,I}}EDICTION NOVEL VIEW SYNTHESIS
t< 50 di=49 £>50 di=59 PSNRT SSIM+ LPIPS]

FULL MODEL 28.8 34.9 35.5 36.7 30.76 0.95 0.09
UNKNOWN INITIAL PARTICLE POSITIONS 35.6 27.2 26.6 26.3 29.21 0.94 0.12
w/o FICTITIOUS PARTICLES CENTER (p,) 37.2 40.7 41.3 42.9 28.41 0.94 0.12
w/o SPHERE DENSITY (o) 31.2 37.9 39.3 394 29.65 0.95 0.10
w/o0 DEFORMATION VECTOR (vp) 33.0 38.1 40.5 42.1 28.91 0.95 0.11
w/o PARTICLE-RELATIVE DIRECTION (d.) 32.2 39.8 43.9 47.0 29.56 0.95 0.10




Thanks for your watching!
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