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Optimization Problems

B Finite-Sum Composite Minimization Problem

in F(z) := hiz) = —) filz)+ h(x), 1
min F(e) = f(z) +hie) = ) file) +h(@), (1)
where f(z):=+13"", fi(x) is the finite average of n convex
component functions fij(z) : R =R, and h(z) : R¢—=R is a
“simple” possibly non-smooth convex function.
o Linear regression: fi(z)=3(alz —b;)?, h(z)=0;
e Logistic regression:

fi(x) =log(1+exp(~bial'x)), hiz)= 3|
Lasso: fi(z)=}(alz — b)?, h(z)=Ale|:;

)

SVM: f;(x)=max{0,1 — b;{a;,x)}, h(:c):%HCUHQ;

July 2022 1



Optimization Problems

B Equality-Constrained Finite-Sum Problem

min  {f(z) + h(w), s.t., Az = w}, (2)

r€R4 weR1

where A€RU*4 f(z):= 3"  f;(z), each fi(-) is convex and
h(-) is convex but possibly non-smooth.
Graph-Guided Fused Lasso

min { 3" fi(x) + Al Axls }
1=1

where f;(-) is the logistic loss function, A >0 is the regularization
parameter, A = |G; I|, and G is the sparsity pattern of the
ecraph obtained by sparse inverse covariance selection.
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Motivations and Contributions

B Motivations

We attempt to answer the following questions, which are not fully addressed in the
existing literature yet:

* For Problem (1), there is still a gap between the best-known oracle complexity [1] and
Its lower bound [2]. Can we design a simple algorithm to close the gap in theory?

* For structure-regularized problem (2), there is a big gap between the convergence
rates of prior works and the lower bound in [3]. Can we obtain the optimal
convergence rate in both theory and practice?

[1] Song, C., Jiang, Y., and Ma, Y. Variance reduction via accelerated dual averaging for finite-sum optimization. NeurlIPS, 2020.
[2] Woodworth, B. and Srebro, N. Tight complexity bounds for optimizing composite objectives. NIPS, 2016.

[3] Xie, G., Luo, L., Lian, Y., and Zhang, Z. Lower complexity bounds for finite-sum convex-concave minimax optimization
problems. ICML, 2020.
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Motivations and Contributions

B Contributions

» For Problem (1), we propose a novel directly accelerated stochastic variance reduced gradient (DAVIS)
method, which has two snapshots and new momentum accelerated rules with a new compensated stochastic

gradient operator.
« we prove that DAVIS obtains an optimal convergence rate 0(1/(nS?)), and the oracle complexity of

DAVIS is O(n + /nL/¢€), which is identical to the lower bound in [1].

Table 1. Comparison of oracle complexities (i.e., the number of first-order oracle calls and proximal oracle calls (Lan, 2020; Xie et al.,
2020)) and convergence rates of some stochastic methods for non-SC problems, where Sy := |log,(n) | +1. Note that we regard using
reductions or proximal point variants as “Indirect” acceleration, such as Catalyst and Katyusha with reduction techniques.

Algorithms SAGA (Defazio et al., 2014) Catalyst Katyusha™ Katyusha
SVRG (Johnson & Zhang, 2013) (Lin et al., 2015a) (Allen-Zhu, 2018) (Allen-Zhu, 2018)

Convergence rates O (%) C’)( bgj%) @ (é) NA
Oracle complexities O(% + %) O((’Tl—l— \/g) 10g2(%)) O(%Jr %) O(n log(1)+ %)
Direct Yes No L _Yes No 1

Algorithms Varag VRADA : DAVIS Lower Bound I

(Lan et al., 2019) (Song et al., 2020) . This paper (Woodworth & Srebro, 2016) I

Convergence rates O( m ) NA ; O ( —a ) O (#) |
Oracle complexities O(n log,(n)+ \/g ) O(n log,log,(n)+ %) 10 (n + %) O (n + \/@ ) |
Direct Yes Yes | Yes - I
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Motivations and Contributions
B Contributions

We also propose a directly accelerated stochastic ADMM (DAVIS-ADMM) algorithm to solve Problem (2), and

prove that DAVIS-ADMM attains the optimal rate O (n—ls) , and the optimal oracle complexity O (n + g) :

Table 2. Comparison of convergence rates and oracle complexities of the stochastic ADMM methods for solving Problem (2), where those
of ASVRG-ADMM are obtained with a boundedness assumption on the constraint sets of primal and dual variables (see Section 4.3 for
details). Note that we can easily achieve the lower bounds for Problem (2) by using (Xie et al., 2020).

Algorithms SAGA-ADMM SVRG-ADMM  ASVRG-ADMM | DAVIS-ADMM  Lower Bound _:

(Zhong & Kwok, 2014) (Zheng & Kwok, 2016) (Liuetal.,2021) | This paper (Xie et al., 2020)
Convergence rates O(<) O(%) O(<7) l O(-5) O(-%) :
Oracle complexities O(% +%) (9(% +%) O(J“—,EJr %): O(nJr%) O(n+%) I
Boundedness assumption No No Yes g No - _I
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Main ldeas of DAVIS for Problem (1

B New Scheme of Double Snapshots in Outer Loop

The second snapshot The first snapshot

where 65 is a parameter (e.g., 5= S%), and the auxiliary

variable z°~! is obtained by solving the following problem:
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Main ldeas of DAVIS for Problem (1

B New Stochastic Update Schemes in Inner Loop

: 6 0 l

I s __ 'S s s —s—1
Momentum | Ye = Pk T (1 m) |
Acceleration 0 |

o= ()t k!

where 2} is obtained by solving the following problem:

mb.

i & argmin {A(2) + (Vi) 2+ "ll=— ]},

where h(z) = h(z) + g—;Hz—ES_IHQ.
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Main ldeas of DAVIS for Problem (1

B New Stochastic Update Schemes in Inner Loop

Compensated stocashtic gradient estimator:

Vi) = Viilyd) = Vi@ )+ V@ emb (22 -2 /. |
—v—'i \_V_’

SVRG estimator I Compensated estimator |

L e e e e e e e e e e e I
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Optimal Convergence Guarantees

Definition 4 (Smoothness)
Each component function f;(-) is convex and L-smooth, i.e., for
all z,yeR%, we have ||Vfi(z) — Vfi(y)|| < L|jz — y||.

B Upper bound of double snapshot update B Upper bound of one-iteration

Lemma 1 (Upper bound of double snapshot update) Lemma 2 (Upper bound of one-iteration)

Suppose that Assumption 1 holds. Let {T°} be the sequence  Suppose that Assumption 1 holds. Let {3, 23} be the sequence
generated by our double snapshot scheme in Algorithm 1, we generated by Algorithm 1. then

have
* 952 * "
F(fs_l) . F(w*) < (1 0 )(F(fs_l) . F(SI}*)) @ E[F(Ez)—F(I )] i_n(Hﬁ —T‘z_le — ||$ —?"}2”2)‘@
92 x5~ * ST 93 —§— *
an(Hx IHQ_H:E —Z 1H2)7 +E[(1—a)(F(:I: 1)—F(:1: ))],
2 2 o
where R® = (052 an) |z~ —z5= 1. where C° = (an_s” — g—%)HES_l 51|

July 2022



Optimal Convergence Guarantees

B OPTIMAL CONVERGENCE RESULTS

Theorem 3

function f;(-) is L-smooth. Let
5 = 2 > e qx; (i.e., the average point of the previous epoch),

Suppose that each component

T om

then the following result holds

L||z*— z°|°

E[F(&*)-F(a")] < 0( 25

Choosing m = O(n), Algorithm 1 achieves an e-suboptimal

solution using at most O(n

July 2022
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Our DAVIS-ADMM Algorithm

B DAVIS-ADMM Algorithm

Algorithm 2 DAVIS-ADMM for Problem (2)

Input:

S and m.
0 ~0

Initialize: 2°, @ X\, 2§, 61 =1, and 1.
I: fors=1,2,...,5do

2:  Update the qnapshots 71w and X° " via (6);
3: Compute the full gradlent at the snapshot 7571,

vf( ) - -yIIZ%_lva( T 1)
4: fork=1,2,...,mdo
5: wzza.rgminw{h(w)-i—g\Azg_l—w-l—/\j’;_le};
6: Update y;, via (4);
7: Pick I}, uniformly at random from {1 2,...,n};
8 Vi(yp) = gn.(y}) + BEQ(z5 -7 1)
9: z7 = argmin, {(ﬁrk (7)), 2) + o5 (z,w3)
10: 2-*? Hz pk 2( s—1_ Fs— ])HQ };
11: Xy, = %zk—k(l 6)," LS = Azf —wi+ )5,
12: end for . "
13: = Wit (1= ) w

/DA 1 an2  _p2

T =3 T Os = a 1+4§%—1 et

14: end for

15: Output: 2°, w".
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B Optimal Convergence Guarantees

Theorem 4

Suppose Assumption 1 holds. Let the constant
c1 =2||ATA||a||z* — Z°)2 + 2||A\* = X012 + 862 + 10||A*||? and
choose m = O(n), then

E[¢(z°, @”)]
(2¢(507@0) + 2" =2°01%, /1 N c13 )
n(S+1) n(S+1)/

<0




Experimental Results
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Figure 1. Comparison of all the methods for solving ¢;-norm regu-
larized logistic regression problems on Adult and Covtype.
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Experimental Results
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Figure 2. Comparison of all the methods for solving graph-guided
fused Lasso problems on Adult and Covtype, where the regulariza-

tion parameter is A = 10~°.
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Thank you!




