Benchmarking and Analyzing Point Cloud
Classification under Corruptions
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* We present a test suite ModelNet-C for benchmarking Point Cloud

classification under corruptions.

* Our benchmark result suggests that point cloud classifiers are at the risk of
getting less robust. We discuss effective designs to improve the robustness.
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Benchmark Result
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Overview

* Introduction
* Why is robustness crucial in point cloud classification?




Why is robustness crucial in point cloud o Wi L2
classification?

* Point clouds are used in safety-critical applications but often suffer from
severe OOD corruptions.

Corruptions are severe and OOD Applications are safety-critical
e.g., occlusions, sensory noise e.g., autonomous driving
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Overview

* Introduction
* Why is robustness crucial in point cloud classification?
* How has the robustness been evaluated?




How has the robustness been evaluated?
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* Prior works use different protocols:
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e.qg., local point dropping
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e.g., ModelNet40 -> ScanObjectNN e.g., one-point attack

Protocol-3

Protocol-2
Robustness to adversarial attacks

Robustness to the sim-to-real gap
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How has the robustness been evaluated?

* Prior works use different protocols:

Jitter Drop Global Drop Local Add Global Add Local Scale Rotate
v

Drop Local PointNet (Qi et al., 2017b) v

R, ECC (Simonovsky & Komodakis, 2017) v
§ § Sac PointNet++ (Qi et al., 2017a)
§12:08 DGCNN (Wang et al., 2019)
$21/ 4 RSCNN (Liu et al., 2019)
T S L PointASNL (Yan et al., 2020)
. Orderly Disorder (Ghahremani et al., 2020)
Y PointAugment (Li et al., 2020)
g ) PointMixup (Chen et al., 2020)
g g% PAConv (Xu et al., 2021a)
s
-

AN

OcCo (Wang et al., 2021)
Triangle-Net (Xiao & Wachs, 2021)
Curve-Net (Xiang et al., 2021)
RSMix (Lee et al., 2021)
PointWolf (Kim et al., 2021)

e.g., local point dropping GDANet (Xu et al., 2021b)
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Protocol-1

. Prior works evaluate point cloud classification robustness on different sets of
Robustness to selected corruptions

corruptions, hence their evaluations can be partial and incomparable.

[X] Not comprehensive
[X] Difficult to compare across
methods




How has the robustness been evaluated?

* Prior works use different protocols:

Real-world
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e.g., local point dropping e.g., ModelNet40 -> ScanObjectNN

Protocol-2

Protocol-1
Robustness to the sim-to-real gap

Robustness to selected corruptions

[X] Not allowing fine-grained analysis

[X] Not comprehensive
[X] Coupled with domain gap

[X] Difficult to compare across
methods
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Corruptions are composite and hard to
analyze
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How has the robustness been evaluated?

* Prior works use different protocols:

Clean Attacked

Drop Local Clean Real-world
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e.qg., local point dropping e.g., ModelNet40 -> ScanObjectNN e.g., one-point attack
Protocol-3

Protocol-2
Robustness to adversarial attacks

Protocol-1
Robustness to the sim-to-real gap

Robustness to selected corruptions
[X] Can not reflect
robustness to corruptions
In the natural world.

[X] Not allowing fine-grained analysis

[X] Not comprehensive
[X] Coupled with domain gap

[X] Difficult to compare across
methods
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e Summary:

* Point clouds are used in safety-critical applications but often suffer from
severe OOD corruptions.

e Despite various ways to evaluate a point cloud classifier’s robustness, there
lacks a standard, comprehensive benchmark.

* => We present ModelNet-C, a full corruption test suite, to close this gap.
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Overview T

* Introduction
* Why is robustness crucial in point cloud classification?
 How has the robustness been evaluated?

* ModelNet-C
 What should a comprehensive corruption set include?




What should a comprehensive corruption e siee
set include?
e Corruptions Taxonomy: We break down common corruptions into detailed

corruption sources, and further simplify them into a combination of atomic
corruptions.

[ Common Corruptions ] Atomic
. Corruptions
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* Introduction
* Why is robustness crucial in point cloud classification?
 How has the robustness been evaluated?

* ModelNet-C

* What should a comprehensive corruption set include?
 How to design the corrupted test set?
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ModelNet-C: ModelNet40 is one of the most used benchmarks. We corrupt
the ModelNet40 testset using the atomic corruptions with varying severities.

Clean Scale Rotate Jitter

Jitter 1 Jitter2  Jitter 3 Jitter 4  Jitter 5

Drop Global Drop Local Add Global

Atomic Corruptions Different Severities
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* Introduction
* Why is robustness crucial in point cloud classification?
 How has the robustness been evaluated?

* ModelNet-C
* What should a comprehensive corruption set include?
* How to design the corrupted test set?
* How to measure the robustness?




T NANYANG
¥ TecHnoLosica. | S-LAB
93‘; UNIVERSITY FOR ADVANCED

How to measure the robustness? 77 &

Evaluation Metrics: Inspired by the ImageNet-C, we use mean CE (mCE), as
the primary metric. Compared to the commonly used Overall Accuracy (OA),
mMCE shows average performance under all types of corruptions.
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Overview

* Introduction
* Why is robustness crucial in point cloud learning?
* How has the robustness been evaluated?

* ModelNet-C

* What should a comprehensive corruption set include?
* How to design the corrupted test set?
 How to measure the robustness?

* Benchmark Results
* Are point cloud classifiers getting more robust?
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Are point cloud classifier getting more o e S
robust?
* No. Although the accuracy on ModelNet40 gradually saturates, the

robustness is at the risk of getting worse, due to the lack of a standard test
Suite.
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* Introduction
* Why is robustness crucial in point cloud classification?
 How has the robustness been evaluated?

* ModelNet-C
* What should a comprehensive corruption set include?
* How to design the corrupted test set?
 How to measure the robustness?

* Benchmark Results
* Are point cloud classifier getting more robust?
 What makes a robust point cloud classifier?
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What makes a robust point cloud classifier? ™ ™

* Three main components: 1) architecture design, 2) self- supervised
pretraining 3) augmentation methods.

~ Initialize
[Architecture} 6 m [ Augmentation ]

[ Self-supervision ] ‘table’
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What makes a robust point cloud classifier?

* We conduct a comprehensive
analysis and observe:

* Proper architecture designs can
improve robustness, e.g., advanced
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benefiting robustness under specific

corruptions.
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* For verification, we propose a new architecture and a new augmentation
technique strictly following our empirical findings.

* They outperform existing methods.

Advanced Grouping

Local Operations High Freq

desk+PointWOLF chair+PointWOLF WOLFMix

Our proposed architecture RPC Our proposed augmentation WolfMix
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Overview

* Introduction
* Why is robustness crucial in point cloud classification?
 How has the robustness been evaluated?

* ModelNet-C
* What should a comprehensive corruption set include?
* How to design the corrupted test set?
 How to measure the robustness?

* Benchmark Results
* Are point cloud classifier getting more robust?
 What makes a robust point cloud classifier?

* Conclusion: A call for robustness in point cloud classification
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* The SoTA methods for point cloud classification on clean data are becoming
less robust to random real-world corruptions.

* We highly encourage future research to focus on classification robustness

so as to benefit real applications.
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Benchmark Result
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* Code: https://github.com/jiawei-ren/ModelNet-C




