Benchmarking and Analyzing Point Cloud Classification under Corruptions

Jiawei Ren, Liang Pan, Ziwei Liu

TL;DR

- We present a test suite *ModelNet-C* for benchmarking Point Cloud classification under corruptions.
- Our benchmark result suggests that point cloud classifiers are at the risk of getting less robust. We discuss effective designs to improve the robustness.

Benchmark Result

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

Why is robustness crucial in point cloud classification?

 Point clouds are used in safety-critical applications but often suffer from severe OOD corruptions.

Applications are safety-critical e.g., autonomous driving

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

Prior works use different protocols:

e.g., local point dropping *Protocol-1*Robustness to selected corruptions

How has the robustness been evaluated?

Prior works use different protocols:

e.g., local point dropping

*Protocol-1*Robustness to selected corruptions

[X] Not comprehensive[X] Difficult to compare across methods

	Jitter	Drop Global	Drop Local	Add Global	Add Local	Scale	Rotate
PointNet (Qi et al., 2017b)	✓	1		√			
ECC (Simonovsky & Komodakis, 2017)	1	✓					
PointNet++ (Qi et al., 2017a)		✓					
DGCNN (Wang et al., 2019)		✓					
RSCNN (Liu et al., 2019)		✓					✓
PointASNL (Yan et al., 2020)		✓		✓			
Orderly Disorder (Ghahremani et al., 2020)	1						
PointAugment (Li et al., 2020)	1	✓				1	✓
PointMixup (Chen et al., 2020)	1	✓				1	✓
PAConv (Xu et al., 2021a)	✓					✓	✓
OcCo (Wang et al., 2021)		✓					
Triangle-Net (Xiao & Wachs, 2021)	1	✓				✓	✓
Curve-Net (Xiang et al., 2021)	✓	✓					
RSMix (Lee et al., 2021)	✓	✓				✓	✓
PointWolf (Kim et al., 2021)	1	✓	✓		✓		
GDANet (Xu et al., 2021b)		✓					✓

Prior works evaluate point cloud classification robustness on different sets of corruptions, hence their evaluations can be partial and incomparable.

How has the robustness been evaluated?

Prior works use different protocols:

e.g., local point dropping *Protocol-1*Robustness to selected corruptions

[X] Not comprehensive[X] Difficult to compare across methods

[X] Not allowing fine-grained analysis

[X] Coupled with domain gap

Corruptions are composite and hard to analyze

How has the robustness been evaluated?

Prior works use different protocols:

e.g., local point dropping Protocol-1 Robustness to selected corruptions

X Not comprehensive X Difficult to compare across methods

[X] Not allowing fine-grained analysis

[X] Coupled with domain gap

X Can not reflect robustness to corruptions in the natural world.

Introduction

• Summary:

- Point clouds are used in **safety-critical** applications but often suffer from severe **OOD corruptions**.
- Despite various ways to evaluate a point cloud classifier's robustness, there lacks a **standard**, **comprehensive** benchmark.
- => We present *ModelNet-C*, a full corruption test suite, to close this gap.

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

What should a comprehensive corruption set include?

• **Corruptions Taxonomy**: We break down common corruptions into detailed corruption sources, and further simplify them into a combination of atomic corruptions.

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

ModelNet-C: ModelNet40 is one of the most used benchmarks. We corrupt the ModelNet40 testset using the atomic corruptions with varying severities.

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

Evaluation Metrics: Inspired by the ImageNet-C, we use mean CE (mCE), as the primary metric. Compared to the commonly used Overall Accuracy (OA), mCE shows average performance under all types of corruptions.

$$CE_{i} = \frac{\sum_{l=1}^{5} (1 - OA_{i,l})}{\sum_{l=1}^{5} (1 - OA_{i,l}^{DGCNN})},$$

$$\text{mCE} = \frac{1}{N} \sum_{i=1}^{N} \text{CE}_{i}$$

- Introduction
 - Why is robustness crucial in point cloud learning?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifiers getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

Are point cloud classifier getting more robust?

• **No.** Although the accuracy on ModelNet40 gradually saturates, the robustness is at the risk of getting worse, due to the lack of a standard test suite.

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

What makes a robust point cloud classifier?

• Three main components: 1) architecture design, 2) self- supervised pretraining 3) augmentation methods.

What makes a robust point cloud classifier?

- We conduct a comprehensive analysis and observe:
 - Proper architecture designs can improve robustness, e.g., advanced grouping and self-attention.
 - Pretrain signals can be transferred, benefiting robustness under specific corruptions.
 - Mixing and deformation augmentations can bring significant improvements to model robustness.

What makes a robust point cloud classifier?

- For verification, we propose a new architecture and a new augmentation technique strictly following our empirical findings.
- They *outperform* existing methods.

Our proposed augmentation WolfMix

- Introduction
 - Why is robustness crucial in point cloud classification?
 - How has the robustness been evaluated?
- ModelNet-C
 - What should a comprehensive corruption set include?
 - How to design the corrupted test set?
 - How to measure the robustness?
- Benchmark Results
 - Are point cloud classifier getting more robust?
 - What makes a robust point cloud classifier?
- Conclusion: A call for robustness in point cloud classification

Conclusion

- The SoTA methods for point cloud classification on clean data are becoming less robust to random real-world corruptions.
- We highly encourage future research to **focus on classification robustness** so as to benefit real applications.

Benchmark Result

Thank you for listening!

• Code: https://github.com/jiawei-ren/ModelNet-C

