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TL;DR

• We present a test suite ModelNet-C for benchmarking Point Cloud 
classification under corruptions.
• Our benchmark result suggests that point cloud classifiers are at the risk of 

getting less robust. We discuss effective designs to improve the robustness.

ModelNet-C Benchmark Result



Overview

• Introduction
• Why is robustness crucial in point cloud classification?
• How has the robustness been evaluated?

• ModelNet-C
• What should a comprehensive corruption set include?
• How to design the corrupted test set?
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• Conclusion: A call for robustness in point cloud classification



Why is robustness crucial in point cloud 
classification?
• Point clouds are used in safety-critical applications but often suffer from 

severe OOD corruptions.

Corruptions are severe and OOD
e.g., occlusions, sensory noise

Clean Real-world

Applications are safety-critical 
e.g., autonomous driving
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How has the robustness been evaluated?

• Prior works use different protocols:

Clean Real-world

Protocol-1
Robustness to selected corruptions 

Protocol-2
Robustness to the sim-to-real gap

Protocol-3
Robustness to adversarial attacks

e.g., local point dropping e.g., ModelNet40 -> ScanObjectNN e.g., one-point attack

Clean Attacked



How has the robustness been evaluated?

• Prior works use different protocols:

Protocol-1
Robustness to selected corruptions 

e.g., local point dropping

[X] Not comprehensive 
[X] Difficult to compare across 
methods

Prior works evaluate point cloud classification robustness on different sets of 
corruptions, hence their evaluations can be partial and incomparable.
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[X] Not comprehensive 
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[X] Not allowing fine-grained analysis
[X] Coupled with domain gap 

Corruptions are composite and hard to 
analyze



How has the robustness been evaluated?

• Prior works use different protocols:

Clean Real-world

Protocol-1
Robustness to selected corruptions 

Protocol-2
Robustness to the sim-to-real gap

Protocol-3
Robustness to adversarial attacks

e.g., local point dropping e.g., ModelNet40 -> ScanObjectNN e.g., one-point attack

[X] Not comprehensive 
[X] Difficult to compare across 
methods

[X] Not allowing fine-grained analysis
[X] Coupled with domain gap 

[X] Can not reflect 
robustness to corruptions 
in the natural world. 

Clean Attacked



Introduction

• Summary:
• Point clouds are used in safety-critical applications but often suffer from 

severe OOD corruptions.
• Despite various ways to evaluate a point cloud classifier’s robustness, there 

lacks a standard, comprehensive benchmark.
• => We present ModelNet-C, a full corruption test suite, to close this gap.
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What should a comprehensive corruption 
set include?
• Corruptions Taxonomy: We break down common corruptions into detailed 

corruption sources, and further simplify them into a combination of atomic 
corruptions.
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How to design the corrupted test set?

ModelNet-C: ModelNet40 is one of the most used benchmarks. We corrupt 
the ModelNet40 testset using the atomic corruptions with varying severities.

Atomic Corruptions Different Severities
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How to measure the robustness?

Evaluation Metrics: Inspired by the ImageNet-C, we use mean CE (mCE), as 
the primary metric. Compared to the commonly used Overall Accuracy (OA), 
mCE shows average performance under all types of corruptions.
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Are point cloud classifier getting more 
robust?
• No. Although the accuracy on ModelNet40 gradually saturates, the 

robustness is at the risk of getting worse, due to the lack of a standard test 
suite. 
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What makes a robust point cloud classifier?

• Three main components: 1) architecture design, 2) self- supervised 
pretraining 3) augmentation methods. 



What makes a robust point cloud classifier?

• We conduct a comprehensive 
analysis and observe:
• Proper architecture designs can 

improve robustness, e.g., advanced 
grouping and self-attention.
• Pretrain signals can be transferred, 

benefiting robustness under specific 
corruptions. 
• Mixing and deformation 

augmentations can bring significant 
improvements to model robustness. 



What makes a robust point cloud classifier?

• For verification, we propose a new architecture and a new augmentation 
technique strictly following our empirical findings. 
• They outperform existing methods.

Our proposed architecture RPC Our proposed augmentation WolfMix
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Conclusion

• The SoTA methods for point cloud classification on clean data are becoming 
less robust to random real-world corruptions.
• We highly encourage future research to focus on classification robustness 

so as to benefit real applications. 

ModelNet-C Benchmark Result



Thank you for listening!

• Code: https://github.com/jiawei-ren/ModelNet-C


