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Motivation

Problem Description

Feature
Variables

Predictive
ML Model

Predicted Travel Time
between the Nodes

Shortest Path
Solver

Fastest Path
with Predicted Time
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Problem Description

Feature
Variables

Predictive
ML Model

Predicted Cost Coefficient

Combinatorial
Solver

Optimal Decision
With Predicted Cost 
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Two-stage Learning vs Decision-Focused Learning (WILDER, B., DILKINA, B., & TAMBE, M.).

Predicted 
Cost Coefficient

Actual 
Cost Coefficient

• Train model to minimize the difference 
between predicted and actual cost 
coefficient.

• Training does not consider the downstream 
optimization problem.

Optimal Decision
With Predicted Cost 

Coefficient

True
Optimal Decision

• Train model to minimize the difference 
between predicted and actual optimal 
decision.

• Training to improve the output of the 
optimization problem.

Two-stage Learning Decision-Focused Learning
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• We study generic combinatorial optimization problem of the following form 

𝑣⋆(𝑐) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑣∈𝑉

𝑓 𝑣, 𝑐

𝑣: decision variable; 𝑉: domain of 𝑣; 𝑐: cost coefficient

Decision-Focused Learning

• Our goal is to minimize the regret of the predictions Ƹ𝑐 . Formally, regret is defined as

regret Ƹ𝑐, 𝑐 = 𝑓 𝑣⋆ Ƹ𝑐 , 𝑐 − 𝑓 𝑣⋆ 𝑐 , 𝑐

Realized objective value with 
the predicted coefficient

Optimal objective value
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Decision-focused Learning Training Loop

Ƹ𝑐
𝑣⋆ Ƹ𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∈𝑉𝑓(𝑣, Ƹ𝑐 )

𝑣⋆ ( Ƹ𝑐) Compute
Regretbackpropagation backpropagation

Features 𝑐, 𝑣⋆(𝑐)

Training Data

Neural 
Network

Combinatorial Solver

Backpropagation through 
the combinatorial solver

Repeatedly solving the optimization problem

Our aim is to facilitate training with fewer call to the solver
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Main Idea

▪ We want to predict Ƹ𝑐, so that 𝑓 𝑣, 𝑐 and 𝑓 𝑣, Ƹ𝑐 have same ordering for all 𝑣 ∈ 𝑉

Rank Based Loss Functions

𝒗𝒊 𝒇(𝒗𝒊, 𝒄) 𝒇(𝒗𝒊, ො𝒄)

[a,b,c] 1 10

[a,d,c] 2 25

[a,b,e,c] 3 50

[a,d,e,c] 4 80

[a,e,c] 5 100
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As it is not practically impossible to consider the partial ordering of the whole solution 
space, in practice, we formulate decision-focused learning as learning the partial ordering 
of 𝑣 ∈ 𝑆 ⊂ 𝑉

Implementation By Caching Solution

• We implement this by the solution caching scheme proposed by Mulamba, M., et al. (2020).
• The cache is initialized by all optimal solutions present in the training data.
• Then the cache is expanded by adding solutions of predicted ෝ𝑐 .
• They experimentally showed it is sufficient to add solutions of 10% of predicted ෝ𝑐 .

Learn to rank 𝒗 ∈ 𝑺
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Pointwise Loss

𝒇(𝒗𝒊, 𝒄) 𝒇(𝒗𝒊, ො𝒄) (𝒇(𝒗𝒊, 𝒄) − 𝒇(𝒗𝒊, ො𝒄) )
𝟐

1 3 22

2 1 12

3 2 12

4 3 12

5 4 12

Total Loss 8

Predict Ƹ𝑐

Compute 𝑓 𝑣, Ƹ𝑐 for

𝑣 ∈ 𝑆

Regress 𝑓 𝑣, Ƹ𝑐 on 
𝑓 𝑣, 𝑐
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Pairwise Loss

In pairwise loss formulation, we compare all other 𝑣𝑖 with the best 𝑣𝑏𝑒𝑠𝑡

If 𝑓 𝑣𝑖 , Ƹ𝑐 has lower value than 𝑓 𝑣𝑏𝑒𝑠𝑡, Ƹ𝑐 , then their difference is the loss

𝒗𝒊 𝒇(𝒗𝒊, 𝒄) 𝒇(𝒗𝒊, ො𝒄)

[a,b,c] 1 10

[a,d,c] 2 25

[a,b,e,c] 3 50

[a,d,e,c] 4 80

[a,e,c] 5 100

𝑣𝑏𝑒𝑠𝑡
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• We formulate pairwise loss by introducing a margin parameter γ

• The pairwise loss is finally defined as  𝐫𝐞𝐥𝐮(𝛄 + 𝐟(𝐯𝐛𝐞𝐬𝐭, Ƹ𝐜) − 𝐟(𝐯𝐢, Ƹ𝐜) )

• Extension of NCE loss [Mulamba, M., et al. (2020)]:   (𝐟(𝐯𝐛𝐞𝐬𝐭, Ƹ𝐜) − 𝐟(𝐯𝐢, Ƹ𝐜) )

Pairwise Loss



Decision-Focused Learning:
Through The Lens Of Learning To Rank

12-7-2022 | 12

Pairwise Difference Loss

𝒇(𝒗𝒊, 𝒄) 𝒇(𝒗𝒊, ො𝒄) (𝒇(𝒗𝒃𝒆𝒔𝒕, 𝒄) − 𝒇(𝒗𝒊, 𝒄) ) (𝒇(𝒗𝒃𝒆𝒔𝒕, ො𝒄) − 𝒇(𝒗𝒊, ො𝒄) ) (𝒄𝒐𝒍 𝟒 − 𝒄𝒐𝒍 𝟓 ) 𝟐

1 12 0 0 02

2 13 1 1 02

3 15 2 3 12

4 16 3 4 12

5 18 4 6 22

Total Loss 6

In this loss formulation, we regress predicted difference on actual difference.
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• In pairwise loss formulation, we compare 𝑣𝑏𝑒𝑠𝑡 with other 𝑣.

• In essence, in pairwise loss formulation, we only consider whether 𝑣𝑏𝑒𝑠𝑡 is same for 𝑐 and Ƹ𝑐.

• In listwise loss formulation, we consider the partial ordering of all 𝑣 ∈ 𝑆 ⊂ 𝑉.

Listwise Loss
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𝑝 𝑣; 𝑐 = ቐ
1

𝑍
𝑒𝑥𝑝 −𝑓(𝑣, 𝑐)/𝜏 𝑣 ∈ 𝑉

0 𝑣 ∉ 𝑉

Listwise Loss Formulation

We start by defining the following discrete exponential distribution in the solution space 

𝑣𝑏𝑒𝑠𝑡• 𝜏 controls the smoothness of the distribution

• 𝜏 → 0, 𝑝 𝑣; 𝑐 has positive pmf only at 𝑣𝑏𝑒𝑠𝑡

• As 𝜏 increases, 𝑝 𝑣; 𝑐 converges to a uniform distribution
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Listwise Loss Formulation

𝑣𝑏𝑒𝑠𝑡
𝑣𝑏𝑒𝑠𝑡

True Distribution Predicted Distribution

𝑝 𝑣; 𝑐 𝑝 𝑣; Ƹ𝑐

Listwise loss is the cross-entropy loss between 𝑝 𝑣; 𝑐 and 𝑝 𝑣; Ƹ𝑐
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Rank Based Loss With Caching Solution

Ƹ𝑐
𝑣⋆ Ƹ𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣∈𝑉𝑓(𝑣, Ƹ𝑐 )

𝑣⋆ ( Ƹ𝑐) Compute
Regretbackpropagation backpropagation

Features 𝑐, 𝑣⋆(𝑐)

Training Data

Neural 
Network

Combinatorial Solver

𝑆 ⊂ 𝑉

No Backpropagation through 
the combinatorial solver
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Result
Shortest Path Problem

Degree 4 Degree 6 Degree 8

We demonstrate that by minimizing the rank based loss functions we can lower regret.
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Result
Shortest Path Problem

Degree 4 Degree 6 Degree 8

Listwise and Pairwise loss functions generate lowest regret in these problem instances.
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Efficiency Gain In Training Time
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Training Time Comparison in Scheduling Problem

Instance-1 Instance-2



Decision-Focused Learning:
Through The Lens Of Learning To Rank

12-7-2022 | 20

❑ We formulate decision-focused learning as learning the partial ordering of the solution 

space with respect to the objective value. 

❑ We propose surrogate learning-to-rank loss functions for decision-focused learning.

❑ We show the approach of Mulamba, M., et al. (2020) can be viewed as a particular case 

of the proposed learning-to-rank loss functions.

❑ We evaluate the performance of the loss functions in three combinatorial optimization 

problems, where we show that it is possible to lower regret by minimizing the proposed 

loss functions.

❑ The performances of the proposed loss functions are comparable to the state of the arts.

Contribution
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