Human-in-the-loop: Provably Efficient Preference-based Reinforcement Learning with General Function Approximation

Xiaoyu Chen¹, Han Zhong¹, Zhuoran Yang², Zhaoran Wang³, Liwei Wang¹

1. Peking University, 2. Yale University, 3. Northwestern University

Reward-shaping Challenges

- Standard RL: The agent interacts with the unknown environment aiming to maximize cumulative rewards
- However, in many tasks, reward functions might not be readily available or difficult to design

Robotics

Autonomous Driving

Healthcare

Preference-based RL (PbRL)

 Basic Idea: The agent only receives preference feedback over trajectory pairs instead of reward signals.

• Previous results mainly study efficient exploration in tabular RL setting [1,2].

Our Formulation

Overview: Efficient exploration for RbRL with general function approximation.

- Preference-based RL formulation (Episodic setting with K episodes):
 - In episode k, the agent executes two policies $\pi_{k,1}, \pi_{k,2}$, obtains the trajectories $\tau_{k,1}, \tau_{k,2}$, and asks for their preferences between $\tau_{k,1}, \tau_{k,2}$
 - $\mathbb{T}(\tau_1,\tau_2)=\Pr(\tau_1>\tau_2)$: the probability that τ_1 is preferred compared with τ_2
 - $\mathbb{T}(\pi_1,\pi_2)$: The expected preference over two policies π_1,π_2
 - We aim to minimize the regret compared with the optimal policy π^* :

Reg(K) =
$$\sum_{k=1}^{K} \sum_{i=1}^{2} \left(\mathbb{T}(\pi^*, \pi_{k,i}) - \frac{1}{2} \right)$$

Our Formulation

Overview: Efficient exploration for RbRL with general function approximation.

- Function Approximation formulation:
 - We assume the transition and preference function space satisfies bounded Eluder dimension and log-covering number.
 - Covers linear and generalized linear preference function space.
 - Covers linear mixture MDPs and tabular MDPs.

Our Results

- We propose an efficient learning algorithm with $ilde{O}(ext{poly}(dH)\sqrt{K})$ regret
 - d: Eluder dimension or log-covering number of the transition and preference space
 - *H*: horizon in episodic setting
 - *K*: Total number of episodes

- Main techniques:
 - Construct a near-optimal policy set and execute the most exploratory policy [2]
 - A refined confidence bonus inspired from the reward-free setting [3]
- Our lower bound indicates that the upper bound is near-optimal when specialized to linear setting

Other results

- Connection with the setting of RL with Once-per-episode feedback [4]
 - Upper bound: our Algorithm for PbRL can be almost directly applied to this setting with near-optimal regret.
 - Lower bound: The lower bound for PbRL is derived by reduction from the problem of RL with once-per-episode feedback.

- New setting: RL with n-wise Comparisons
 - Basic idea: multiple trajectories are sampled and compared with each other
 - We propose efficient algorithm with near-optimal regret guarantee