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Federated Learning

* Unique distributed learning framework with decentralized data
= Server learns a shared model through collaboration with a large number of remote clients
= Achieve the basic level of privacy since the server does not observe training data directly
= Each client runs a number of iterations to minimize communication costs with the central server
= The server constructs a shared model via model averaging

@ Train models with local data
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Main Challenge: Data Heterogeneity

Data distributions of individual clients are different from the global distribution

=  Multiple local updates on non-iid data distributions lead to client-drift
= |ndividual client updates are prone to diverge and inconsistent

= Overfit on local skewed data

* This challenge is exacerbated when the client participation rate per round is low

= Unstable client device operations and limited communication channels
= Hampers the convergence to the optimal average loss over all clients
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[Karimireddy20] S. P. Karimireddy, et al.: SCAFFOLD: stochastic controlled averaging for on-device federated learning. ICML 2020
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Existing Frameworks

* Regularize local model updates to prevent a large deviation from the global model
= Variance reduction techniques
= Dynamic regularization based on local gradient
= Ensure the similarity of the representations between the global model and local networks

@ Need additional communication cost per round

@ Extra memory requirements in clients to store local historical states
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Existing Frameworks

* Knowledge distillation based methods
= Use the global model as a teacher
= Matches the representations of the local model to those of the teacher at the logit level

@ Utilize global knowledge on whole data distribution

@ The parameters in the lower layers are less affected

@ Merely simulating the fixed output of the global model is sub-optimal
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Existing Frameworks

* Knowledge distillation based methods
= Use the global model as a teacher of local model
= Matches the representations at the logit level

@ Utilize global knowledge on whole data distribution

@ The parameters in the lower layers are less affected

@ Merely simulating the fixed output of the global model is sub-optimal

e Layer-wise KD techniques
= Minimize the L2-distance between activations of the local model and those of the global model

@ All intermediate layers are affected

@ Independent supervisions at multiple layers may lead to inconsistent and
restrictive updates of model parameters
@ Still merely simulating the fixed output of the global model
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Multi-Level Branched Regularization (FedMLB)

e Multi-level hybrid branching
= Augment a subnetwork in the global network B> to a local subnetwork BL:m
= Construct different hybrid pathways depending on branching locations
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Multi-Level Branched Regularization (FedMLB)

* Online knowledge distillation
= Encourage the representation of individual hybrid pathways to be similar to the main branch
= Use two different loss terms; the cross-entropy loss £} and the knowledge distillation loss £},
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Multi-Level Branched Regularization (FedMLB)

* Online knowledge distillation
= Encourage the representation of individual hybrid pathways to be similar to the main branch
= Use two different loss terms; the cross-entropy loss £} and the knowledge distillation loss £},
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Multi-Level Branched Regularization (FedMLB)

* Final loss function
" L=Lp+M Ly +X-Ly
= Update the model parameters in the main pathway of the local network while the blocks from the

global network in the hybrid pathways remain unchanged
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Multi-Level Branched Regularization (FedMLB)

* Final loss function
" L=Lp+M Ly +X-Ly
= Update the model parameters in the main pathway of the local network while the blocks from the
global network in the hybrid pathways remain unchanged
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Multi-Level Branched Regularization (FedMLB)

* Learning procedure

Algorithm 1 FedMLB

Input: # of clients NV, # of communication rounds 7',
# of local iterations K, initial server model §°
for eachroundt =1,...,7 do
Sample a subset of clients S; C {1,...,N}.

Server sends #* ! to each of all clients i € S;. @ No requirement of additional
for each i € S;, in parallel do . .
6t gt communication overhead

fork=1,...,Kdo
for each (z,y) in a batch do
fL($§92,k—1))

T

m .0?
Qg(m) 7-) < softmax (fH (z; :_,m,k—l))’

M= Ly vl — 1

qr(z; T) + softmax (

end for
E(Oﬁ,k_l) — L+ A - L?}E + Ao - EIIEIL
9f,k — 9f,k—1 —nVL
end for
Client sends 6; ;- back to the server
end for
In server:
et = ﬁ ZiESt 0:,K
end for
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Multi-Level Branched Regularization (FedMLB)

* Learning procedure

Algorithm 1 FedMLB

Input: # of clients NV, # of communication rounds 7',
# of local iterations K, initial server model §°
for eachroundt =1,...,7 do
Sample a subset of clients S; C {1,...,N}.

Server sends #* ! to each of all clients i € S;. @ No requirement of additional
for each i € S;, in parallel do . .
6t gt communication overhead

fork=1,...,Kdo
for each (z,y) in a batch do
fL(ﬂ”§9$,k—1))

T

f;—In(x;ef,m,k—l))
2

qr(z; T) + softmax (

q7 (z; 7)  softmax ( -

T = Lies v s M—1
end for . . .
L0, y) & Lo+ h - LE+ 2o LB @ Clients are not supposed to store historical
Oik < 051 —nVL information of the model
end for
Client sends 6} j back to the server
end for
In server:
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end for
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Experimental Results

 FedMLB with server-side optimization techniques
= Moderate-scale with Dir(0.3): 100 clients, 5% participation

CIFAR-100 Tiny-ImageNet
Method Accuracy (%, 1) Rounds (#,]) Accuracy (%,7) Rounds (#,])
500R 1000R 47% 53% S00R 1000R 38%  42%
FedAvg (McMahan et al., 2017) 41.88  47.83 924 1000+ 33.94 3542 1000+ 1000+

FedMLB 47.39 54.58 488 783 37.20 40.16 539 1000+
FedAvgM (Hsu et al., 2019) 46.98 53.24 515 936 36.10 38.36 794 1000+
FedAvgM + FedMLB 53.02 58.97 349 499 40.93 43.52 380 642
FedADAM (Reddi et al., 2021)  47.07 54.19 499 947 3698 40.60 647 1000+
FedADAM + FedMLB 48.59 58.23 472 645 35.81 42.90 552 873
FedDyn (Acar et al., 2021) 48.38 55.78 425 735 37.35 41.17 573 1000+
FedDyn + FedMLB 57.33 61.81 299 377 43.05 46.55 324 446
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Experimental Results

 Comparison with other local objectives on CIFAR-100

Dir(0.3), 100 clients, 5% Dir(0.3), 500 clients , 2%
Method Accuracy (%,1) Rounds (#,]) Accuracy (%,71) Rounds (#,])
500R 1000R 40% 48% S500R 1000R 30% 36%
FedAvg (McMabhan et al., 2017) 41.88  47.83 428 1000+ 29.87 37.48 504 858

FedAvg + KD (Hinton et al., 2014) 42.99  49.17 389 842 2983 37.65 505 859
FedAvg + FitNet (Romero et al., 2015) 42.04  47.67 419 1000+ 29.92 37.63 503 860

FedProx (Li et al., 2020a) 42.03 4793 419 1000+ 29.28 36.16 533 966
FedLLS-NTD (Lee et al., 2021) 43.22 49.29 386 825 28.66  35.99 546 1000+
FedGKD (Yao et al., 2021) 42.28 47.96 397 1000+ 29.27 37.25 530 896
FedMLB (ours) 47.39 54.58 339 523 32.03 42.61 446 642
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Conclusion

* Asimple but effective architectural regularization technique to handle heterogeneous
data distribution involved in federated learning

Online distillation between the main pathway and multiple hybrid pathways
* Reduce the drift of the representations in the local models from the feature space of the global model

Two desired properties
* No additional communication cost
* No requirement to store the history of local states

Demonstrate remarkable performance gains in terms of accuracy and efficiency compared to existing
methods.

ICML 2022



