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Domain Adaptation: Source Domain  Target Domain⟶
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Source (with Labels) Target (No Labels)



Gradual Domain Adaptation: Source  Intermediate Domains  Target⟶ ⟶
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- In many real-world applications (e.g., self-driving cars, recommendation 
systems), distributions do not change abruptly


- Instead, they change smoothly in time / space

- Could we do better in this case?



Gradual Self-Training [Kumar, Ma and Liang. ICML 2020 ] 
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Can well train a strong 
classifier at the beginning 
using offline data

Use the classifier to: Pseudo-
label the unlabeled data Self-
train to update the classifier

Evaluate the classifier at 
the target domain

Source Target

Intermediate Domains



Existing Theory of Gradual Self-training
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With high probability,

- : initial classifier; : classifier evaluated at the target domain


- : error in the source domain; : error in the target domain


- : # of intermediate domains (time steps) - 1

- : # of unlabeled data points in each intermediate/target domain

h0 hT

ε0 εT

T
n

[Kumar, Ma and Liang. Understanding Self-Training for Gradual Domain Adaptation. ICML 2020 ]



Existing Theory of Gradual Self-training
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With high probability,

[Kumar, Ma and Liang. Understanding Self-Training for Gradual Domain Adaptation. ICML 2020 ]

Is it possible to have a more optimistic generalization bound of the 

gradual self-training algorithm (hopefully with some insights for algorithm design)?

The dependency on  is an exponential (pessimistic)T



Our Improved Analysis of Gradual Self-training
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- : initial classifier; : classifier evaluated at the target domain


- : # of intermediate domains (time steps) - 1

- : # of unlabeled data points in each domain

- : average distributional distance between consecutive domains

h0 hT

T
n
Δ



Proof Sketch
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1. If the distribution distance is small, then for any smooth model, the error difference is also 
small. Lipschitz constants -Wasserstein Distancep

2. The self-training algorithm is stable:

3. A reduction to online learning (treating the pseudo-label as if they were ground-truth)
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Comparison of Generation Bounds for Gradual Self-Training
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[Kumar, Ma, Liang. ICML’20]: 

Ours: 

The dependency on  is an exponential (pessimistic)T

The dependency on  becomes linear (optimistic)T



Optimal Path of Intermediate Domains
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: length of the path of intermediate domains    
(measured in some metric space)
TΔ

Geodesic in the metric space

A metric space (e.g., induced by 

the -Wasserstein distance metric)p



Optimal Number of Intermediate Domains
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Minimize our error bound w.r.t. T

- : average distributional distance between consecutive domainsΔmax



Is there an optimal  in practice?T*
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Thank you for watching this presentation!

Code: github.com/Haoxiang-Wang/gradual-domain-adaptation 


Contact Information:

● Haoxiang Wang: hwang264@illinois.edu

● Bo Li: lbo@illinois.edu

● Han Zhao: hanzhao@illinois.edu
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