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Background
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Exchange Economy and Social Welfare Maximization

m In exchange economy (EE), a set of rational agents with
individual initial endowments allocate and exchange a finite
set of valuable resources based on a common price system.

m The target of EE is to achieve Competitive Equilibrium (CE),
where all agents maximize their own utilities under their
budget constraint.

m When each agent within a system is to myopically maximize
its own utility at each step, a central planner is introduced to
steer the system so as to achieve Social Welfare Maximization
(SWM).
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Reinforcement Learning

Reward r: = r(s¢, at) Action a
t

Next state s¢4+1

m The agent aims to learn a policy m which maximizes its state
value function V{"(s;) at the first step and the initial state s;.

m State value function V,™(s) = Eﬁ[zthl r(sn,an) | sp = s].
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Challenges and Contribution
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Challenges

m Problem formulation and optimality characterization of a
dynamic bilevel economic system involving both EE and
SWM.

m Exploration-exploitation tradeoff in online learning and
distribution shift in offline learning.

m Adoption of general function approximation.
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Main Contribution

m We propose a new economic system known as Markovian
Exchange Economy (MEE) and define a suboptimality
function for the planner and the agents.

m For online and offline MEE, we design MARL-style algorithms,

proving the online regret and the offline suboptimality,
respectively.
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Markovian Exchange Economy
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Markovian Exchange Economy (MEE)

m A finite horizon MEE consists of N agents, one social planner,
and H time steps.

m Each state s, consists a context ¢;, and endowments ej,.

m The joint actions of the agents consist the allocations for each
agent and the price for the exchange.

m Interaction Protocol: At each time step h € [H], the agents
and the planner observe state st € S and pick their own
actions aﬁ and bﬁ. Then the next state is generated by the
environment 5;‘1"+1 ~ Pp(- 92 b;‘l) and they observe the

utilities {uﬁ’(i)}ie[m with U,Zm = "zzgl/i)(ls'ﬁ,mflf’(i)) from the
environment.
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Characterization of Optimality

Agent policy v : S+ A, s (v (s),--- , v (s),1P(s)).
m Optimality: one-step competitive equilibrium (Definition 2.2).

m Characterized by a fixed-point formulation for value functions
(Theorem 2.4).

Planner policy 7 : S — B, s+ m(s).
m Optimality: maximize social welfare (sum of utilities).

m Characterized by another fixed-point formulation for value
functions (Theorem 2.6).

Joint optimality: policy pair (7*,v*) satisfying competitive
equilibrium and social welfare maximization simultaneously.
m Planner’s policy 7 is coupled with agents’ policy v.

m Fixed-point formulation (Theorem 2.7) = Suboptimality of
any policy pair (7, v), denoted by SubOpt(v, 7).
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I Online Learning for Markov Exchange Economy
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Model-based Optimistic online Learning for MEE (MOLM)

MOLM algorithm design (two steps):

m Model estimation step: construct confidence sets Z/l}’f for
utility functions and P}’f for transition kernels using data from
previous k — 1 episodes.

m We use value targeted regression (VTR, Ayoub et al., 2020)
for transition estimation.

m Optimistic planning step: use Z/l}’f and P}’f to perform
optimistic planning to approximate the joint optimal policy:

vh(s) = CE({@, (s, iepw):
mh(s) = argmaxZ/ Vh+1 Ph (ds'|s, b),
beB

where ﬁz € Uh and Ph € Ph are optimistic estimations.
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Model-based Optimistic online Learning for MEE (MOLM)

MOLM algorithm analysis:

m Online regret for K episodes:

K
Regretce sywm(K) = Z SubOpt (¥, v¥).
k=1
m Sublinear regret of MOLM algorithm:
Regretcg swm(K) € O(H*NVIK),

where H is the horizon, N is the number of agents, d is the
eluder dimension of the function classes for general function
approximations (Russo & Van Roy, 2013).

m Achieving O(V/K )-regret which is sublinear: MOLM efficiently
finds the jointly optimal policy (7*,*) approximately.

m The key to achieve such regret is using the optimistic principle
for exploration in uncertain environments.
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[ Offline Learning for Markov Exchange Economy
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Model-based Pessimistic offline Learning for MEE (MPLM)

MPLM algorithm design (two steps):

m Model estimation step: construct confidence sets U, for
utility functions and P}, for transition kernels using previously
collected offline data only.

m Pessimistic policy optimization step: use U} and P}, to
perform pessimistic policy optimization to approximate the
joint optimal policy:

Di(s) = CE({a@y (s, ) biepm)):
N

P . /\(7.‘_7’”\)7(1‘)
7, P) = arg max min g Vs (s1),
( ) Tell P {PhE'Ph € ’Vhe[H]} 1,(P7u) ( )

where Uy, € Uy, and Ph € Py, are pessimistic estimations.
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Model-based Pessimistic offline Learning for MEE (MPLM)

MPLM algorithm analysis:
m Offline suboptimality of MPLM algorithm:
SubOpt (7, 7) € O(H>N/C*/K).
where H is the horizon, N is the number of agents, ¢ is the

covering number of the function classes for general function
approximations.

m C* is the concentrability coefficient between data I and joint
optimal policy (7*,v*). Due to the use of pessimism principle,
we only require the data to cover the joint optimal policy
(partial coverage, rather than full coverage).

= Achieving O(1/V/K)-suboptimality: MPLM efficiently finds
the jointly optimal policy (7*,v*) approximately.
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Thank You!
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