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Gromov-Wasserstein
How to align points across two incomparable point clouds?
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Discrete Gromov-Wasserstein:

Πa,b = {P ∈ ℝn×m
+ s.t. P1m = a, PT1n = b}• Set of Couplings:

GWc((a, A), (b, B)) = min
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Not Comparable directly

• Cost Matrices: A = (d𝒳(xi, xi′￼
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Mirror Descent Scheme:

Hard to solve in practice:

•GW is a non convex quadratic problem

• GW is NP-hard in general 

Need for a fast solver approximating the GW cost

Prior Art: Entropic Regularization
Shannon Entropy: H(P) = − ∑

i,j

Pi,j(log(Pi,j) − 1)

GWc,ϵ((a, A), (b, B)) = min
P∈Πa,b

𝒬A,B(P) − ϵH(P)

At each iteration:
• Update the cost matrix: C = − 4APB

• Solve Entropic OT using Sinkhorn: P = arg min
P∈Πa,b

KL(P | |K)

∈ 𝒪(nm(n + m))

∈ 𝒪(nm) 𝒪(nm(n + m))} Total Complexity per iteration:

In this work, we propose instead to directly constraint the coupling to admit a low-NN rank


• Update the kernel matrix: K = e−C/ϵ ∈ 𝒪(nm)



Low-NN Rank Couplings: Πa,b(r) := {P ∈ Πa,b s . t . rk+(P) ≤ r}

NN rank : rk+(M) := min {q |M =
q

∑
i=1

Ri, ∀i, rk(Ri) = 1,Ri ≥ 0}

Definition of Low-rank Gromov-Wasserstein

LGWc,r((a, A), (b, B)) := min
P∈Πa,b(r)

𝒬A,B(P)

Characterization of Low-NN Rank Couplings:

Πa,b(r) = {P ∈ ℝn×m
+ | P = QDiag(1/g)RT, Q ∈ Πa,g, R ∈ Πb,g, g > 0 and g ∈ Δr}

Low-Rank Gromov-Wasserstein



LGWr((a, A), (b, B)) = min
(Q,R,g)∈𝒞1(a,b,r)∩𝒞2(r)

𝒬A,B(QDiag(1/ g)RT)

 where  
𝒞1(a, b, r) := {(Q, R, g) ∈ ℝn×r

+ × ℝm×r
+ × (ℝ*+)r s.t. Q1r = a, R1r = b}

𝒞2(r) := {(Q, R, g) ∈ ℝn×r
+ × ℝm×r

+ × (ℝ+)r s.t. QT1n = RT1m = g}
{

Reparametrization of LGW

Mirror Descent Scheme:

At each iteration:

• Update the cost matrices: C1 = −AQD1/g C2 = RTB, C3 = 𝒟(QTC1C2R),
 where  is the operator extracting the diagonal of a squared matrix 𝒟

 where  is the operator transforming a vector  into a diagonal matrix Da a
• Update the kernel matrices: K1 = Q ⊙ e4γC1C2RD1/g K2 = R ⊙ e4γCT

2 CT
1 QD1/g, , K3 = g ⊙ e−4γC3/g2

• Solve the convex Barycenter problem using Dykstra: (Q, R, g) = arg min
(Q,R,g)∈𝒞1(a,b,r)∩𝒞2(r)

KL((Q, R, g) | | (K1, K2, K3))

∈ 𝒪((n2 + m2)r)

∈ 𝒪((n + m)r)

𝒪((n2 + m2)r) ≪ 𝒪((n + m)nm)Total Complexity per iteration:   as soon as r ≪ min(n, m)

∈ 𝒪((n + m)r2)



Example: The squared Euclidean distance, or more generally any distance matrix.  

From a Quadratic Solver to a Linear Solver 

Remark: The only operations which remains quadratic in the MD scheme described before is the updates of the cost 
matrices  and .  C1 C2

By assuming that  and  admit low-rank structures, we obtain a linear time algorithm with respect 
to the number of samples. 

A B

Low-rank cost matrices:

If  and   with  and  with  then updating 
the cost matrices can be done in linear time:

A = A1AT
2 B = B1BT

2 A1, A2 ∈ ℝn×d B1, B2 ∈ ℝm×d′￼ d, d′￼ ≪ min(n, m)

C1 = −A1AT
2 QD1/g ∈ 𝒪(nrd) C2 = RTB1BT

2 ∈ 𝒪(mrd′￼) and

𝒪(r(nd + md′￼)) ≪ 𝒪((n2 + m2)r)Total Complexity per iteration:   as soon as  d, d′￼ ≪ min(n, m)

Other results
We provide a quantitive bound and show the non-asymptotic stationary convergence of our algorithm. Roughly 
speaking, our algorithm requires  iterations for a precision of .𝒪(1/δ) δ



Thank you

Experiments

Problem: We consider the single-cell alignment problem where we have access to two representations of the 
same cells. These representations are not directly comparable, and therefore we apply GW to recover the true 
matching. 

Results: 


•  We observe that our method is able to obtain similar GW cost (and ever better) while being order of magnitude 
faster than the Entropic approach. 


•  In addition, the quality of the coupling (measured by the FOSCTTM) is comparable to the one obtained by the 
entropic method.


