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Learning with Noisy Labels
• Noisy labels are inevitable

• Large-size dataset is unanimous for the success of DNNs.
• Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.
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Learning with Noisy Labels

𝑅𝑅𝐿𝐿 𝑓𝑓 ≔ 𝐸𝐸 𝑋𝑋,𝑌𝑌 ~𝑃𝑃 𝑥𝑥,𝑦𝑦 𝐿𝐿 𝑓𝑓 𝑥𝑥 , 𝑦𝑦

What we want

• Noisy labels are inevitable
• Large-size dataset is unanimous for the success of DNNs.
• Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.
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Learning with Noisy Labels

�𝑅𝑅𝐿𝐿
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Learning with Noisy Labels

• Existing methods are still not robust to label noises: They should solve two problems 
simultaneously.
• Train a classifier
• Manage noisy label problem

𝑅𝑅𝐿𝐿 𝑓𝑓 ≔ 𝐸𝐸 𝑋𝑋,𝑌𝑌 ~𝑃𝑃 𝑥𝑥,𝑦𝑦 𝐿𝐿 𝑓𝑓 𝑥𝑥 , 𝑦𝑦
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What we get What we want

• Existing methods are still not robust to label noises: They should solve two problems 
simultaneously.
• Train a classifier
• Manage noisy label problem

• Modelling of reducing the gap between the prediction of trained classifier and the true 
latent label is necessary!

• Noisy labels are inevitable
• Large-size dataset is unanimous for the success of DNNs.
• Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

�𝑅𝑅𝐿𝐿
𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 ≔ 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝐿𝐿(𝑓𝑓 𝑥𝑥𝑖𝑖 , �𝑦𝑦𝑖𝑖)
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NPC: Noisy Prediction Calibration
• Bayesian Network • Generative Process

1. 𝑦𝑦~𝐷𝐷𝐷𝐷𝐷𝐷 𝛼𝛼𝑥𝑥
2. �y~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋𝑥𝑥,𝑦𝑦)
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NPC: Noisy Prediction Calibration

𝒑𝒑 𝒚𝒚 𝒙𝒙 = �
�𝒚𝒚

𝒒𝒒𝝓𝝓 𝒚𝒚 �𝒚𝒚,𝒙𝒙 𝒑𝒑�𝝍𝝍(�𝒚𝒚|𝒙𝒙)

Noisy Classifier
Output

Trainable Function

𝐻𝐻𝑘𝑘𝑘𝑘 𝑥𝑥 =
𝑝𝑝 𝑦𝑦 = 𝑗𝑗 𝑥𝑥
𝑝𝑝( �𝑦𝑦 = 𝑘𝑘|𝑥𝑥)

�
𝑖𝑖

𝑝𝑝 �𝑦𝑦 = 𝑘𝑘 �𝑦𝑦 = 𝑖𝑖, 𝑥𝑥 𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥)

• Although NPC works as a post-processing algorithm, 𝐻𝐻 provides a same pathway to correct 
the noisy classifier as 𝑇𝑇.
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NPC: Noisy Prediction Calibration
• Although NPC works as a post-processing algorithm, 𝐻𝐻 provides a same pathway to correct 

the noisy classifier as 𝑇𝑇.

𝐻𝐻𝑘𝑘𝑘𝑘 𝑥𝑥 =
𝑝𝑝 𝑦𝑦 = 𝑗𝑗 𝑥𝑥
𝑝𝑝( �𝑦𝑦 = 𝑘𝑘|𝑥𝑥)

�
𝑖𝑖

𝑝𝑝 �𝑦𝑦 = 𝑘𝑘 �𝑦𝑦 = 𝑖𝑖, 𝑥𝑥 𝑇𝑇𝑖𝑖𝑖𝑖(𝑥𝑥)

• NPC can approximate 𝑇𝑇 good enough.
• Values in parentheses are the MSE between the 

estimation and the truth.
• NPC can also generate the transition matrix with 

comparable quality.
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Experiment Result
• Test accuracy : Synthetic Datasets
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Experiment Result
• Test accuracy : Real Datasets
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Experiment Result
• NPC as a post-processor

• NPC shows the best 
performances among 
post-processors

• NPC achieves better accuracy 
than Label Correction methods

• Asterisks represent label 
correction to model prediction 
(application  as post-processor)
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Experiment Result
• NPC as a Generative Model

NPC: Class-related

CausalNL: Total Image
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• A good post processor 
should increase            
and decrease

• NPC a cautious corrector
• CausalNL more risk-taker

22

Experiment Result
• NPC as a Generative Model

NPC: Class-related

CausalNL: Total Image
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Experiment Result
• NPC identifies potential noises in benchmarks
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• We introduce novel post-processing method ‘NPC’ (Noisy Prediction Calibration)
• NPC models the relation between output of a classifier and the true label via generative model.
• NPC consistently boosts the classification performances of pre-trained models from diverse algorithms.
• The prediction calibration scheme of NPC can be applied on various fields of machine learning.

24

Conclusion 

• Model-agnostic algorithm which only requires 
the model prediction.

• Modeling objective is defined based on true 
latent label (𝑌𝑌)

Classifier Training
(In-Processing) 

Prediction Calibration
(Post-Processing)

• Computationally inefficient for models with 
too many parameters. (e.g. CLIP, GPT-3)

• It often hinge upon heuristics or assumptions 
(e.g. simple pattern at the early learning)
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Thank you
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