From Noisy Prediction to True Label: Noisy Prediction Calibration via Generative Model

HeeSun Bae*, Seungjae Shin*, Byeonghu Na, JoonHo Jang, Kyungwoo Song, Il-Chul Moon

Correspondence to: Il-Chul Moon <icmoon@kaist.ac.kr>

- Noisy labels are inevitable
 - Large-size dataset is unanimous for the success of DNNs.
 - Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

- Noisy labels are inevitable
 - Large-size dataset is unanimous for the success of DNNs.
 - Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

$$R_L(f) \coloneqq E_{(X,Y) \sim P(x,y)}[L(f(x),y)]$$

- Noisy labels are inevitable
 - Large-size dataset is unanimous for the success of DNNs.
 - Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

What we get

$$\tilde{R}_L^{emp}(f) \coloneqq \frac{1}{n} \sum_{i=1}^n L(f(x_i), \tilde{y}_i)$$

$$R_L(f) := E_{(X,Y) \sim P(x,y)}[L(f(x),y)]$$

- Noisy labels are inevitable
 - Large-size dataset is unanimous for the success of DNNs.
 - Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

What we get

$$\tilde{R}_L^{emp}(f) \coloneqq \frac{1}{n} \sum_{i=1}^n L(f(x_i), \tilde{y}_i)$$

- Noisy labels are inevitable
 - Large-size dataset is unanimous for the success of DNNs.
 - Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

What we get

$$\tilde{R}_L^{emp}(f) \coloneqq \frac{1}{n} \sum_{i=1}^n L(f(x_i), \tilde{y}_i)$$

$$R_L(f) \coloneqq E_{(X,Y) \sim P(x,y)}[L(f(x), y)]$$

- Existing methods are still not robust to label noises: They should solve two problems simultaneously.
 - Train a classifier
 - Manage noisy label problem

- Noisy labels are inevitable
 - Large-size dataset is unanimous for the success of DNNs.
 - Yet such large-scale dataset creation is arduous and prone to errors in their label annotations.

What we get $R_L^{emp}(f) \coloneqq \frac{1}{n} \sum_{i=1}^n L(f(x_i), \tilde{y}_i)$ $R_L(f) \coloneqq E_{(X,Y) \sim P(x,y)}[L(f(x), y)]$

- Existing methods are still not robust to label noises: They should solve two problems simultaneously.
 - Train a classifier

KAIST

- Manage noisy label problem
- Modelling of reducing the gap between the prediction of trained classifier and the true latent label is necessary!

Bayesian Network

- Generative Process
 - 1. $y \sim Dir(\alpha_x)$
 - 2. $\hat{y} \sim Multi(\pi_{x,y})$

Bayesian Network

- Generative Process
 - 1. $y \sim Dir(\alpha_x)$
 - 2. $\tilde{y} \sim Multi(\pi_{x,y})$
- $p(y|\hat{y},x)$ is intractable!
 - \rightarrow Minimize $KL(q(y|\hat{y},x)|p(y|\hat{y},x))$

Bayesian Network

- Generative Process
 - 1. $y \sim Dir(\alpha_x)$
 - 2. $\tilde{y} \sim Multi(\pi_{x,y})$
- $p(y|\hat{y},x)$ is intractable!
 - \rightarrow Minimize $KL(q(y|\hat{y},x)|p(y|\hat{y},x))$
- Neural Network structure of NPC $p(y|x) = \sum_{\widehat{y}} q_{\phi}(y|\widehat{y},x) p_{\widehat{\psi}}(\widehat{y}|x)$

• Although NPC works as a post-processing algorithm, *H* provides a same pathway to correct the noisy classifier as *T*.

$$p(y|x) = \sum_{\hat{y}} q_{\phi}(y|\hat{y}, x) p_{\hat{\psi}}(\hat{y}|x)$$

$$H_{kj}(x) = \frac{p(y = j|x)}{p(\hat{y} = k|x)} \sum_{i} p(\hat{y} = k|\tilde{y} = i, x) T_{ij}(x)$$

$$\text{Trainable Function}$$
Noisy Classifier
$$\text{Output}$$

 Although NPC works as a post-processing algorithm, H provides a same pathway to correct the noisy classifier as T.

$$H_{kj}(x) = \frac{p(y=j|x)}{p(\hat{y}=k|x)} \sum_{i} p(\hat{y}=k|\tilde{y}=i,x) T_{ij}(x)$$

- NPC can approximate T good enough.
 - Values in parentheses are the MSE between the estimation and the truth.
 - NPC can also generate the transition matrix with comparable quality.

Test accuracy : Synthetic Datasets

	MNIST			Fashion-MNIST							CIFAR-10									
Model	Clean	IDN	Clean	S	N	AS	SN	II	N	SRI	DN	Clean	S	N	AS	SN	II	N	SR	IDN
	-	40%	-	20%	80%	20%	40%	20%	40%	20%	40%	-	20%	80%	20%	40%	20%	40%	20%	40%
CE	97.8	66.3	87.1	74.0	27.0	81.0	77.3	68.4	52.1	81.0	67.3	86.9	73.1	15.1	80.2	71.4	72.9	53.9	72.6	61.8
w/ NPC	98.2	89.0	88.4	84.0	35.8	85.9	86.2	82.5	74.5	81.8	69.4	89.0	80.8	17.0	84.7	78.8	80.9	59.9	74.3	64.3
Joint	93.0	93.6	82.8	82.0	6.0	82.1	82.3	82.7	82.4	80.6	74.6	83.0	78.9	8.3	81.5	76.8	80.4	64.5	70.6	62.2
w/ NPC	94.0	94.6	83.6	82.7	6.0	82.9	82.9	83.4	83.0	81.1	75.5	84.4	80.2	8.3	83.0	77.7	80.7	69.1	72.0	63.6
Coteaching	98.0	87.5	87.0	82.5	64.2	88.2	73.6	81.8	75.4	84.0	75.0	88.5	82.5	29.7	86.5	76.6	81.5	75.2	75.3	66.6
w/ NPC	98.3	90.6	88.3	85.8	66.0	88.5	73.6	85.1	78.7	84.2	75.3	89.2	85.3	32.1	87.1	76.8	84.8	78.5	76.1	67.2
JoCoR	97.8	93.3	88.7	86.0	27.6	88.9	79.4	86.3	83.2	81.9	71.3	89.1	83.6	24.8	82.6	73.3	82.8	75.3	75.2	66.1
w/ NPC	98.3	96.1	89.8	88.0	31.5	89.2	82.7	88.0	85.7	82.2	72.3	89.3	86.0	27.0	85.1	79.0	85.8	80.1	75.9	66.7
CORES2	97.0	48.8	87.2	74.6	8.9	77.6	74.3	80.0	58.1	81.3	71.2	87.1	70.1	31.2	79.0	71.2	70.3	50.9	72.8	62.0
w/ NPC	98.0	67.2	88.5	84.3	10.2	82.5	81.0	84.0	69.6	82.2	74.9	88.2	80.4	30.7	84.2	80.4	80.4	65.6	74.2	64.1
SCE	97.7	66.6	87.0	74.0	27.0	82.0	77.4	68.3	52.0	81.1	67.5	86.9	73.1	15.1	80.2	71.4	72.9	53.9	72.6	61.8
w/ NPC	98.2	88.7	88.3	83.7	35.5	86.4	86.7	82.0	75.2	81.8	69.7	87.4	75.0	15.2	81.5	75.2	75.4	55.6	72.9	62.5
Early Stop	96.5	73.3	87.5	83.6	49.5	84.1	76.6	79.5	55.4	83.3	72.6	83.0	79.1	18.0	80.9	70.6	77.1	62.5	71.4	60.6
w/ NPC	97.9	90.8	88.7	85.9	62.9	87.6	87.1	84.3	75.3	84.0	76.0	84.0	82.5	18.2	81.2	72.0	79.4	65.1	72.1	63.0
LS	97.8	66.2	87.5	73.9	27.8	81.5	77.0	69.0	52.5	81.1	67.5	86.9	73.1	15.1	80.2	71.4	72.9	53.9	72.6	61.8
w/ NPC	98.2	88.6	88.6	83.7	35.2	86.0	86.4	82.2	74.7	81.6	69.5	89.0	80.8	15.5	84.7	78.8	80.9	59.9	74.3	64.3
REL	98.0	90.7	88.1	84.6	70.1	82.8	76.2	84.6	75.5	83.7	78.1	80.7	74.9	21.2	72.8	69.9	75.5	51.8	69.3	63.8
w/ NPC	97.9	95.5	86.9	85.0	70.3	85.3	83.0	83.8	80.1	82.9	78.3	83.4	78.6	26.0	75.9	76.1	78.5	51.2	70.7	64.2
Forward	98.0	67.9	88.5	77.4	24.3	83.3	79.2	75.2	56.9	82.4	69.5	85.3	71.8	16.9	78.2	70.1	70.2	54.5	73.2	63.5
w/ NPC	98.4	91.1	89.6	85.3	33.0	87.2	86.8	86.8	80.5	83.3	73.7	88.7	81.5	17.2	83.8	74.5	80.3	63.3	74.8	65.0
DualT	96.7	94.3	86.3	84.5	10.0	86.9	83.1	85.1	68.5	82.7	73.2	84.3	79.3	7.6	80.6	77.1	78.6	71.2	68.7	63.1
w/ NPC	97.8	96.6	88.2	85.9	10.0	87.6	84.3	86.3	72.3	83.4	74.9	86.0	83.0	8.4	83.0	77.5	81.0	77.3	70.1	64.0
TVR	97.7	64.4	87.0	72.6	24.9	80.6	76.4	66.3	51.7	81.4	67.7	86.7	71.9	15.2	78.5	71.2	72.3	53.6	72.2	62.2
w/ NPC	98.1	84. 5	88.3	82.3	31.9	84.9	85.3	79.8	73.6	82.1	70.3	88.3	80.8	15.7	84.1	76.5	80.8	60.7	74.5	64.5
CausalNL	98.1	85.2	88.1	84.0	51.5	88.8	87.4	83.4	75.2	82.0	71.2	89.6	79.9	17.0	84.6	74.8	79.9	60.4	74.6	63.5
w/ NPC	98.6	94.5	89.4	87.0	58.9	89.3	88.7	87.6	83.3	83.3	74.1	89.7	81.2	18.8	85.0	74.8	81.2	71.9	75.3	63.9

Test accuracy : Real Datasets

	Food	d-101	Clothing1M				
Method	w.o/ NPC	w/ NPC	w.o/ NPC	w/ NPC			
CE	78.37	80.21 ±0.2	68.14	70.83 ±0.1			
Early Stop	73.22	76.80 ± 0.3	67.07	70.21 ±0.1			
SCE	75.23	78.26 ±0.3	67.77	70.36 ±0.1			
REL	78.96	78.95 ± 0.4	62.53	64.83 ±0.1			
Forward	83.76	83.77 ± 0.3	66.86	70.02 ±0.1			
DualT	57.46	61.82 ±0.7	70.18	69.99±0.4			
TVR	77.34	79.37 ±0.1	67.18	69.44 ±0.1			
CausalNL	86.08	86.29 ±0.0	68.31	69.90 ±0.2			

NPC as a post-processor

 NPC shows the best performances among post-processors

Method	Label Correction							
Noise	Joint	LRT	MLC	CauseNL				
SN	80.0±0.6	82.9±0.2	71.1±1.9	77.2±1.5				
IDN	78.6±1.3	82.5±0.2	72.2±2.6	78.4 ± 1.7				
Method		Post-pr	ocessing					
Noise	LRT*	MLC^*	CauseNL*	NPC				
	1	·						
SN	82.7 ± 0.1	82.2 ± 1.9	83.5 ± 0.5	85.3 ±0.3				

- NPC achieves better accuracy than Label Correction methods
- Asterisks represent label correction to model prediction (application as post-processor)

NPC as a Generative Model

NPC as a Generative Model

CausalNL: Total Image

NPC: Class-related

 A good post processor should increase
 and decrease

- NPC a cautious corrector
- CausalNL more risk-taker

NPC identifies potential noises in benchmarks

Conclusion

- We introduce novel post-processing method 'NPC' (Noisy Prediction Calibration)
 - NPC models the relation between output of a classifier and the true label via generative model.
 - NPC consistently boosts the classification performances of pre-trained models from diverse algorithms.
 - The prediction calibration scheme of NPC can be applied on various fields of machine learning.

Classifier Training (In-Processing)

- Computationally inefficient for models with too many parameters. (e.g. CLIP, GPT-3)
- It often hinge upon heuristics or assumptions (e.g. simple pattern at the early learning)

Prediction Calibration (Post-Processing)

- Model-agnostic algorithm which only requires the model prediction.
- Modeling objective is defined based on true latent label (Y)

Thank you