Differential Nearest Neighbors Regression

Youssef Nader Leon Sixt Tim Landgraf

Freie Universität Berlin, Department of Mathematics and Computer Science, Institute of Computer Science

What is DNNR?

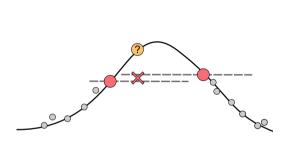


Figure 1: Illustration of KNN Regression

$$\eta_{\mathsf{KNN}}(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{X}_m \in \mathcal{B}_{\mathbf{x}, \#k}} \mathbf{Y}_m.$$

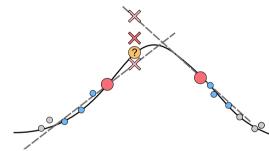


Figure 2: Illustration of DNNR

$$\eta_{\text{DNNR}}(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{X}_m \in \mathcal{B}_{\mathbf{X}, \#k}} (\mathbf{Y}_m + \hat{\gamma}_m(\mathbf{x} - \mathbf{X}_m))$$

DNNR Training

DNNR Learns a matrix W

$$d(x_i, x_j) = (x_i - x_j)^T W(x_i, x_j)$$

Optimization Objective:

$$\textit{W}^* = \arg\min_{\textit{W}} \sum_{\textit{i,j} \in \textit{I}} \text{cossim} \big(\textit{d}(\textit{X}_\textit{i}, \textit{X}_\textit{j}), \big| \textit{Y}_\textit{i} - \hat{\eta}_{\text{DNNR}}(\textit{X}_{\text{nn}(\textit{i},\textit{k}')}) \big| \, \big),$$

Optimize using SGD

DNNR Theoretical Bounds

with probability at least $1 - \delta$:

DNNR Pointwise error

KNN Pointwise error

$$\varepsilon_{\mathsf{DNNR}} = \mathbf{h}_{\mathsf{DNNR}}^2 \vartheta_{\mathsf{max}} \left(1 + \tau \right)$$

$$\varepsilon_{\mathsf{KNN}} = 2\vartheta_{\mathsf{max}} h_{\mathsf{KNN}}$$

lacktriangle where au represents the error for approximating the gradient in DNNR

$$au = \left\lceil rac{\sqrt{\sum_{i=1}^{m} ||
u_i||_1^{2\mu}}}{\sigma_1} \mid X \in \mathcal{B}_{\mathsf{x},\mathsf{h}}
ight
ceil$$

• the error tolerance of DNNR will be lower than for KNN As long $\tau < \frac{2}{h_{\text{max}}} - 1$,

Base Datasets Benchmark

- ▶ 8 real world small and medium sized datasets
- evaluation against 11 models, including Catboost and Tabnet
- ▶ DNNR and DNNR 2nd order achieve best performance on 3 datasets
- ▶ DNNR is within 5% difference of the best performing on 2 other datasets

Feynman Benchmark

- ▶ 119 datasets sampled from classical and quantum physics equations
- ▶ 100k datapoints each

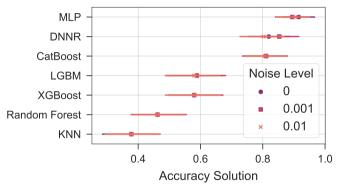


Figure 3: Accuracy on the Feynman Symbolic Regression Database under three levels of noise. The marks show the percentage of solutions with $R^2 > 0.999$. The bars denote 95% confidence intervals.

PMLB Benchmark

- ▶ 133 datasets
- mixture of real world and synthetic datasets

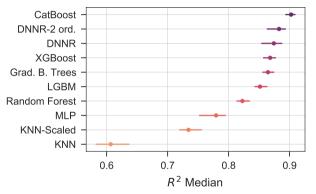


Figure 4: Results on the PMLB benchmark. The markers show the median R^2 performance over all datasets runs. Horizontal bars indicate the 95% bootstrapped confidence interval.

Qualitative studies

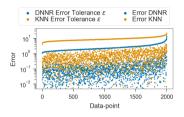


Figure 5: Application of theoretical bounds, comparison between the error bound of KNN (yellow) and DNNR (blue).

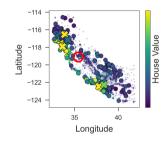


Figure 6: Analysis of Failure in DNNR prediction

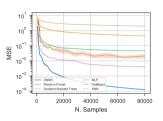


Figure 7: Effect of the number of samples on the different models

