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Motivation

• 3D point cloud processing with NNs
• Classification: given a point cloud X, predict its class

• Rotation equivariant (steerable) models:                 f (RX) = ρ(R) f (X)

• Rotation invariant predictions:                                   f (RX) = f (X)

• How to achieve this with models comprised of spherical neurons?



Spherical neurons

• A neuron with a spherical decision surface
• the hypersphere neuron (Banarer et al. 2003) or   the geometric neuron (Melnyk et al. 2021)
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• In 3D,  f(x, y, z) steers if

• Derive for a spherical neuron 𝑓 𝑿 = 𝑿T𝑺

Freeman et al. (1991),    Knutsson et al. (1992)
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• Spherical neuron activation, 𝑿T𝑺 vs.    Its rotated version activation, 𝑿T𝑺′

• Vary by (up to) first-degree (N=1) spherical harmonics in the rotation angle θ

• In any dimension! (Theorem 4.1)

• In 3D, we need only M = (N+1)2 = 4 basis functions (Theorem 4 by Freeman et al. (1991))

1. Min # basis functions, M
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2. The basis functions

• The original sphere with center c0
• The four spheres must be spaced in 3D equally

• Form a regular tetrahedron – spherical filter bank:

original sphere 
(5×1)

initial rotation (5×5) –
from the orig. center 
into ‖c0‖∙(1, 1, 1)

tetrahedron rotation 
(5×5) –
from (1, 1, 1)
into one of the other
three vertices

back to the                                   
original CS

4×5
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3. Interpolation coefficients

• Spherical filter banks are SO(3)-equivariant (Theorem 4.2)

the change-of-basis matrix

representation of R in the filter bank output space
the 1st column contains interpolation coefficients v(R)



The steerability constraint
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The steerability constraint

scalar

4×1

5×14×5

1×4

scalar outputas per Melnyk et al. (2021)
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Model outline

1) Train Ancestor

2) Steer the spherical neurons
• construct filter banks 

• with SO(3)-equivariant outputs y

• add interpolation coefficients as free parameters

• computed correctly → SO(3)-invariant predictions

Ancestor

SX rest
h non-rotation-invariant

class prediction

y

v(R)B(S)RX

h

rest

Steerable

rotation-invariant

class prediction



Experimental validation

3D Tetris data (Thomas et al. 2018)
Image: Melnyk et. al (2021)

3D skeleton data (Xia et al. 2012)
Image: Melnyk et. al (2022)
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