

Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning

Shuang Qiu¹ Lingxiao Wang² Chenjia Bai³ Zhuoran Yang⁴ Zhaoran Wang²

¹ University of Chicago ² Northwestern University ³ Harbin Institute of Technology ⁴ Yale University

ICML 2022

Contrastive Learning in RL

- Deep reinforcement learning (RL)
 - ▶ Representation power of the neural networks
 - ▶ **Challenge**: millions of interactions with the environment
- Low-dimensional representation learning
 - ▶ Improve **sample efficiency**
 - ▶ Learn representation via solving **auxiliary problems**
 - ▶ **Contrastive self-supervised learning**

Motivation

- Empirical studies on contrastive learning in RL:
 - ▶ Temporal information
 - ▶ Local spatial structure
 - ▶ Image augmentation
 - ▶ Return feedback
 - ▶ ...
- Our work: theoretical understanding of contrastive learning in RL
 - ▶ Temporal information

Contribution

- The first provable UCB-based RL algorithm that incorporates a contrastive loss
- Prove that our algorithm recovers the true representations via contrastive learning and simultaneously achieves sample efficiency
- Provide empirical studies to show the efficacy of the UCB-based RL method with contrastive learning inspired by our theory
- Extend our findings to zero-sum Markov games (MGs) which reveals a new direction

Problem Setting

- Episodic MDP

- ▶ ε -suboptimal policy π

$$\max_{\pi'} V_1^{\pi'}(s_1, r) - V_1^\pi(s_1, r) \leq \varepsilon$$

- Episodic zero-sum MG

- ▶ ε -approximate Nash equilibrium (NE) (π, ν)

$$\max_{\pi'} V_1^{\pi', \nu}(s_1, r) - \min_{\nu'} V_1^{\pi, \nu'}(s_1, r) \leq \varepsilon$$

- Low-rank transition dynamics

$$\mathbb{P}_h(s'|z) = \psi_h^*(s')^\top \phi_h^*(z)$$

- ▶ Both ψ_h^* and ϕ_h^* are **unknown**, different from the linear MDP setting
 - ▶ $z = (s, a)$ for MDPs and $z = (s, a, b)$ for MGs

Algorithms

● Contrastive UCB

- ▶ UCB-based value iteration + contrastive loss minimization
- ▶ Contrastive loss

$$\mathcal{L}_h(\psi, \phi; \mathcal{D}_h^k) := \mathbb{E}_{(s, a, s', y) \sim \mathcal{D}_h^k} [y \log(1 + 1/\psi(s')^\top \phi(s, a)) + (1 - y) \log(1 + \psi(s')^\top \phi(s, a))]$$

- ★ Negative sample distribution $\mathcal{P}_S^-(\cdot)$
- ★ Temporal contrastive data $y \sim \text{Bernoulli}(1/2)$, $s' \sim \mathbb{P}_h(\cdot | s, a)$ if $y = 1$ and $s' \sim \mathcal{P}_S^-(\cdot)$ otherwise
- ★ Function spaces: $\phi \in \Phi$ and $\psi \in \Psi$

- ▶ Exploration via UCB bonus: constructed based on the learned $\phi(s, a)$

● Contrastive ULCB

- ▶ ULCB-based value iteration + contrastive loss minimization

Theoretical Results

Theorem 1

Setting proper parameters, with high probabilities, our algorithms ensure

- *the learned representations **recover the true transitions**,*
- *after K rounds, the generated policy is*
 - ▶ $\tilde{\mathcal{O}}(\sqrt{\log(|\Psi||\Phi|)/K})$ -*suboptimal policy for single-agent MDPs,*
 - ▶ $\tilde{\mathcal{O}}(\sqrt{\log(|\Psi||\Phi|)/K})$ -*approximate NE for Markov games.*

- Function space complexity: $\log(|\Psi||\Phi|)$
- Sample complexity: $\tilde{\mathcal{O}}(1/\varepsilon^2)$ to achieve ε -suboptimal policy or ε -approximate NE

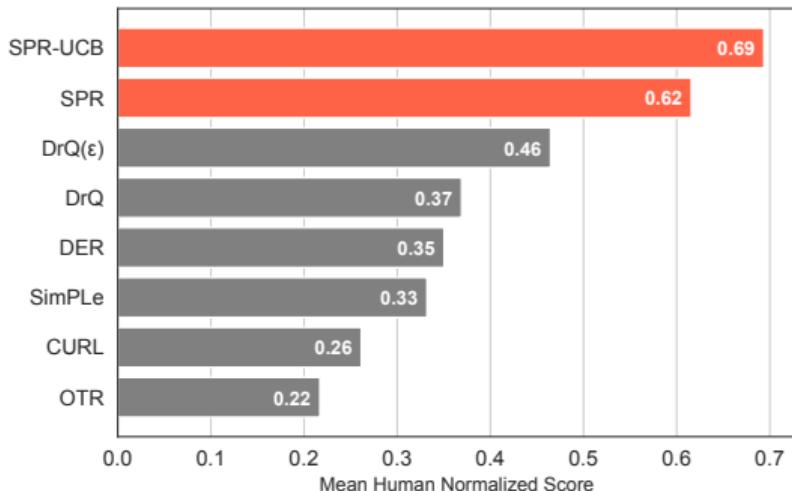
Proof-of-Concept Experiments

• Setup

- ▶ SPR architecture
- ▶ UCB bonus: the last layer $\phi(s, a)$
- ▶ SPR-UCB: SPR + UCB bonus
- ▶ Atari-100K benchmark
- ▶ <https://github.com/Baichenji/a/Contrastive-UCB>

• Results

- ▶ SPR-UCB outperforms SPR and other baseline algorithms.
- ▶ More results in our paper



Thank you!