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Introduction: Neuro-Symbolic Al

* Neuro-symbolic Al aims to combine neural network (NN) learning and

symbolic Al reasoning.
* Problem of interests: injecting discrete logical constraints into NN learning
— NN can also learn from known constraints/knowledge

— Higher accuracy, fewer data, interpretable



Injecting Constraints into NN

How to define constraint loss using NN output In continuous space and
logical formulas In discrete space?

Example

Continuous m ‘ >Lbase|ine(xi label)
>pace nput R X 0.3,0.1,0.9
network (8) | ©0 0.3, 0.1, 0.9]
Constraint
Discrete Logical Formulas Loss L oV -qVr

Space with Symbols -p Vv Qg




Nalve ldea

°* binarize NN output X Into Boolean values b(x).
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Naive Idea

* binarize NN output x Into Boolean values b(x).
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Naive Idea

°* binarize NN output X Into Boolean values b(x).
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Existing Methods to Link NN and Constraints

* Probabillity
* Loss: -log(Pr(S)) where S denotes all satisfying states
* Problem: NP-hard (large circuit, enumerate all proofs or stable models)
« Example: Semantic Loss, DeepProbLog, NeurASP, NeuroLog, etc
* Fuzzy value
* Loss: -Fuzzy(F) where F Is a set of logic formulas
* Problem: Alters the logical properties of the original theory

 Example: Logic Tensor Network, Semantic Based Regularization, etc



Straight-Through Estimators (STE)

* Originally introduced to train binary neural network [Courbariaux et al., 2015]
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Our Approach: Constraint Loss via STE (CL-STE)
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Constraint Loss L

Ly =Cof (1)

L, = 1(C)ov+1 Q) a(l-v) @
deduce = 1, (sum(C ®©C) — Sum(]l{—l}(Lf)))
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unsat = prod(1 — L,) (4)

keep — sum(]l{l}(LU) O (l — L,U) -+ ]1{0} (L,U) ) L,U)
()

Liecduce = sum(deduce © unsat) (6)
Lunsat = avg(1ly;y(unsat) © unsat) (7)
Lsqt = avg(1py(unsat) © keep) (8)

Lc*n,f(ca vV, f) = Ldeduce + Lunsat + Lsat (9)

Lenf has 3 components

* Minimizing Ldeduce makes the NN
take a deduction step.

* Minimizing Lunsat makes the NN
change Its predictions to decrease
the number of unsatisfied clauses.

* Minimizing Lsat makes the NN
more confident in its predictions In
the satisfied clauses.



CL-STE Advantages

* Much more scalable by leveraging GPU and batch training

* EX. mnistAdd-3 problem: given two numbers (each formed by 3 digit
Images) and their sum as the label, the goal is to train an MNIST classifier.

input label
: = 1067
mnistAdd-1 mnistAdd-2 mnistAdd-3

DeepProbLog | 98.36% 2565s | 97.57% 22699s | timeout (>24h)

NeurASP 07.87% 292s 07.85% 1682s timeout (>24h)
CL-STE 07.48% 22s 08.12% 92s 07.78% 402s




CL-STE: Higher Scalability Across Benchmarks

add2x2  apply2x2 member(3) member(5) add2x?2

accuracy(%)

DeepProbLog | 88.440.7 10010 96.310.3 timeout

NeuroLog 97.5+0.4 10040 94.511.5 93.9+x1.5

NeurASP 97.610.2 10040 93.51+0.9 timeout
CL-STE 98.010.2 10040 95.510.7 95.01£0.5
time(s)

DeepProbLog | 1035471 58619 22184211 timeout

NeuroLog 2400+46  2428+29 427112 682140

NeurASP 14212 47+1 2531 timeout

label -4 -32




CL-STE on Semi-Supervised Learning

* Under semi-supervised setting, more unlabeled data, bigger improvement.

* CL-STE helps to train Recurrent Relational Network (a GNN) better on
textual Sudoku problem
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Summary

* CL-STE encodes CNF formulas into a loss function on discretized NN outputs
where

* the STE method makes a binarization function meaningfully differentiable,

* by leveraging GPUs and batch training, CL-STE scales significantly better
compared to state-of-the-art neuro-symbolic methods,

* CL-STE works well with both labeled and unlabeled data, and with different
types of NNs: MLP, CNN, and GNN.






