
Injecting Logical Constraints into Neural Networks

via Straight-Through Estimators

Zhun Yang1, Joohyung Lee1 2, Chiyoun Park2

1 Arizona State University
2 Samsung Research

Introduction: Neuro-Symbolic AI

• Neuro-symbolic AI aims to combine neural network (NN) learning and

symbolic AI reasoning.

• Problem of interests: injecting discrete logical constraints into NN learning

− NN can also learn from known constraints/knowledge

− Higher accuracy, fewer data, interpretable

Injecting Constraints into NN

x

NN output

input

label Lbaseline(x, label)

How to define constraint loss using NN output in continuous space and
logical formulas in discrete space?

Continuous

Space [0.3, 0.1, 0.9]

Example

Constraint

Loss LDiscrete

Space

p ⋁ ¬q ⋁ r

¬p v q

Logical Formulas

with Symbols

neural

network (𝝷)

Naïve Idea

neural

network (𝝷)
x

NN output

input

label Lbaseline(x, label)

b(x)
Constraint

Loss L

binarize

• binarize NN output x into Boolean values b(x).

Discrete

Space

[0.3, 0.1, 0.9]

Logical Formulas

with Symbols

Continuous

Space

[0, 0, 1]

Example

p ⋁ ¬q ⋁ r

¬p v q

1 if x ≥ 0.5,
0 else.｛b(x) =

Naïve Idea

x
NN output

input

label Lbaseline(x, label)

b(x) Constraint

Loss L

binarize

• binarize NN output x into Boolean values b(x).

Discrete

Space

[0.3, 0.1, 0.9]

Logical Formulas

with Symbols

Continuous

Space

[0, 0, 1]

Example

neural

network (𝝷)

p ⋁ ¬q ⋁ r

¬p v q

1 if x ≥ 0.5,
0 else.｛b(x) =

Naïve Idea

x
NN output

input

label Lbaseline(x, label)

b(x) Constraint

Loss L

binarize

• binarize NN output x into Boolean values b(x).

Discrete

Space

[0.3, 0.1, 0.9]

Logical Formulas

with Symbols

Continuous

Space

[0, 0, 1]

Example

neural

network (𝝷)

p ⋁ ¬q ⋁ r

¬p v q

1 if x ≥ 0.5,
0 else.｛b(x) =

Existing Methods to Link NN and Constraints

• Probability

• Loss: -log(Pr(S)) where S denotes all satisfying states

• Problem: NP-hard (large circuit, enumerate all proofs or stable models)

• Example: Semantic Loss, DeepProbLog, NeurASP, NeuroLog, etc

• Fuzzy value

• Loss: -Fuzzy(F) where F is a set of logic formulas

• Problem: Alters the logical properties of the original theory

• Example: Logic Tensor Network, Semantic Based Regularization, etc

Straight-Through Estimators (STE)

• The idea is to replace with where s(x) is a meaningfully

differentiable function, e.g., s(x) = x.

• Originally introduced to train binary neural network [Courbariaux et al., 2015]

1 when s(x)=x

Our Approach: Constraint Loss via STE (CL-STE)

neural

network
x

NN output

input

label Lbaseline(x, label)

C
b(x)

f

given facts

CNF constraints

Lcnf(C, b(x), f)

Constraint Loss Lcnf

Lcnf has 3 components

• Minimizing Ldeduce makes the NN

take a deduction step.

• Minimizing Lunsat makes the NN

change its predictions to decrease

the number of unsatisfied clauses.

• Minimizing Lsat makes the NN

more confident in its predictions in

the satisfied clauses.

CL-STE Advantages

• Much more scalable by leveraging GPU and batch training

• Ex. mnistAdd-3 problem: given two numbers (each formed by 3 digit
images) and their sum as the label, the goal is to train an MNIST classifier.

= 1067+

labelinput

CL-STE: Higher Scalability Across Benchmarks

add2x2

input

label 12 6

7

11

apply2x2

input

1, 9, 4

label -4 -32

-12

40

CL-STE on Semi-Supervised Learning

• Under semi-supervised setting, more unlabeled data, bigger improvement.

• CL-STE helps to train Recurrent Relational Network (a GNN) better on
textual Sudoku problem

Summary

• CL-STE encodes CNF formulas into a loss function on discretized NN outputs

where

• the STE method makes a binarization function meaningfully differentiable,

• by leveraging GPUs and batch training, CL-STE scales significantly better

compared to state-of-the-art neuro-symbolic methods,

• CL-STE works well with both labeled and unlabeled data, and with different

types of NNs: MLP, CNN, and GNN.

Thank you!

