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Introduction: Neuro-Symbolic AI

• Neuro-symbolic AI aims to combine neural network (NN) learning and 

symbolic AI reasoning.

• Problem of interests: injecting discrete logical constraints into NN learning

− NN can also learn from known constraints/knowledge

− Higher accuracy, fewer data, interpretable



Injecting Constraints into NN
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How to define constraint loss using NN output in continuous space and 
logical formulas in discrete space?
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• binarize NN output x into Boolean values b(x).
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Existing Methods to Link NN and Constraints

• Probability

• Loss: -log(Pr(S)) where S denotes all satisfying states

• Problem: NP-hard (large circuit, enumerate all proofs or stable models)

• Example: Semantic Loss, DeepProbLog, NeurASP, NeuroLog, etc

• Fuzzy value

• Loss: -Fuzzy(F) where F is a set of logic formulas

• Problem: Alters the logical properties of the original theory

• Example: Logic Tensor Network, Semantic Based Regularization, etc



Straight-Through Estimators (STE)

• The idea is to replace             with              where s(x) is a meaningfully 

differentiable function, e.g., s(x) = x.

• Originally introduced to train binary neural network [Courbariaux et al., 2015]

1 when s(x)=x



Our Approach: Constraint Loss via STE (CL-STE)
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Constraint Loss Lcnf

Lcnf has 3 components

• Minimizing Ldeduce makes the NN 

take a deduction step.

• Minimizing Lunsat makes the NN 

change its predictions to decrease 

the number of unsatisfied clauses.

• Minimizing Lsat makes the NN 

more confident in its predictions in 

the satisfied clauses.



CL-STE Advantages

• Much more scalable by leveraging GPU and batch training

• Ex. mnistAdd-3 problem: given two numbers (each formed by 3 digit 
images) and their sum as the label, the goal is to train an MNIST classifier.
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CL-STE: Higher Scalability Across Benchmarks
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CL-STE on Semi-Supervised Learning

• Under semi-supervised setting, more unlabeled data, bigger improvement.

• CL-STE helps to train Recurrent Relational Network (a GNN) better on 
textual Sudoku problem



Summary

• CL-STE encodes CNF formulas into a loss function on discretized NN outputs 

where

• the STE method makes a binarization function meaningfully differentiable,

• by leveraging GPUs and batch training, CL-STE scales significantly better 

compared to state-of-the-art neuro-symbolic methods,

• CL-STE works well with both labeled and unlabeled data, and with different 

types of NNs: MLP, CNN, and GNN.



Thank you!


