

Injecting Logical Constraints into Neural Networks via Straight-Through Estimators

Zhun Yang¹, Joohyung Lee^{1,2}, Chiyoun Park²

¹ Arizona State University
² Samsung Research

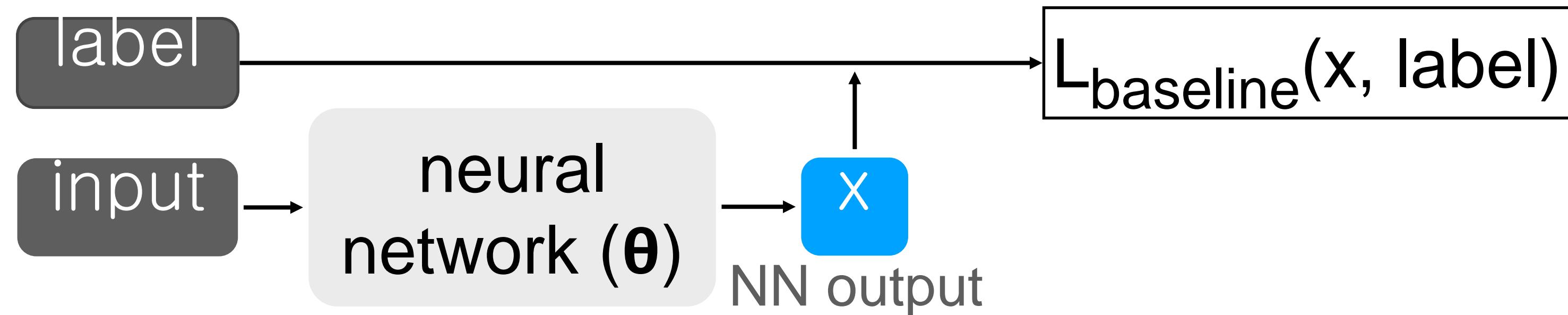
Introduction: Neuro-Symbolic AI

- Neuro-symbolic AI aims to combine neural network (NN) learning and symbolic AI reasoning.
- Problem of interests: injecting discrete logical constraints into NN learning
 - NN can also learn from known constraints/knowledge
 - Higher accuracy, fewer data, interpretable

Injecting Constraints into NN

How to define constraint loss using **NN output** in continuous space and **logical formulas** in discrete space?

Continuous
Space



Discrete
Space

Logical Formulas
with Symbols

Constraint
Loss L

Example

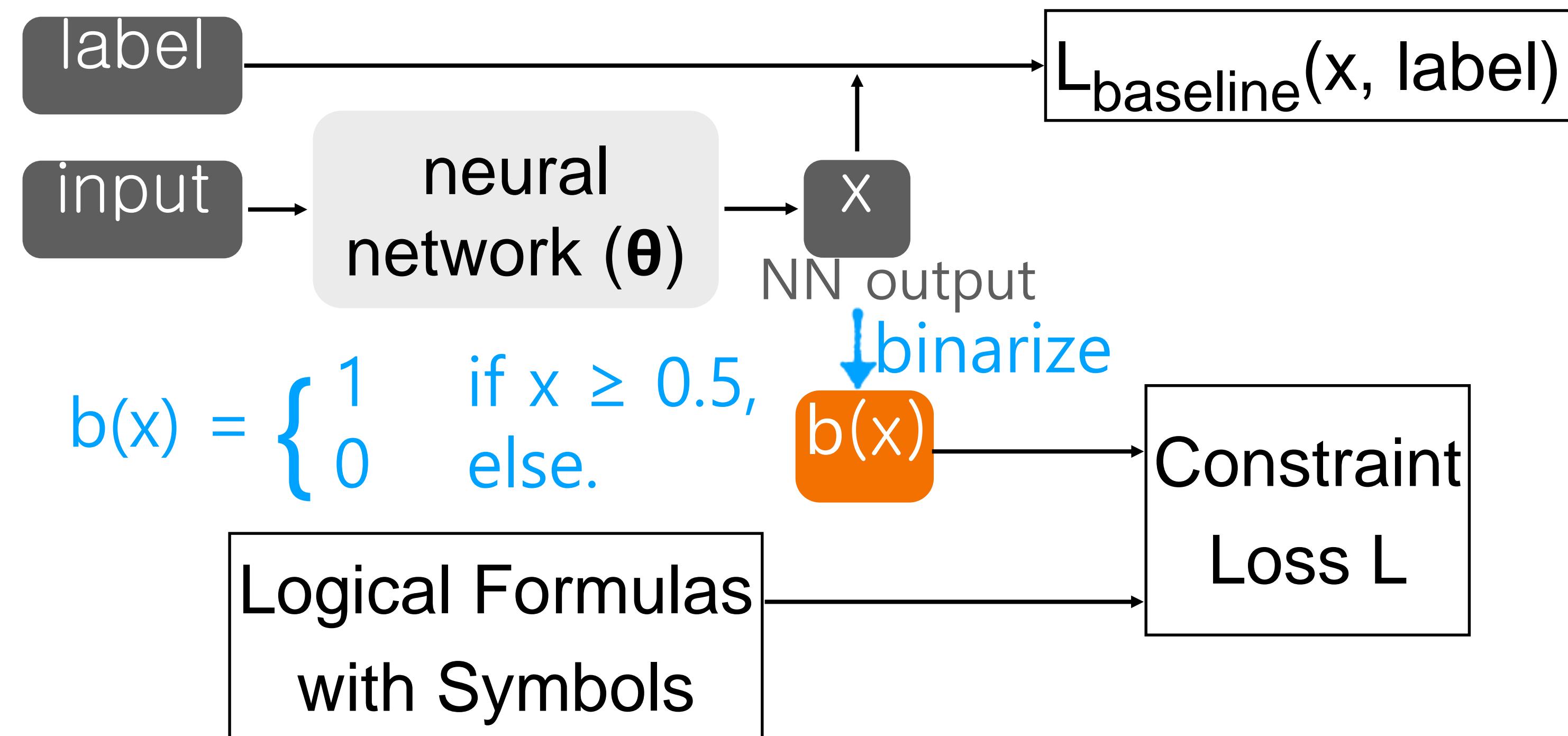
[0.3, 0.1, 0.9]

$p \vee \neg q \vee r$
 $\neg p \vee q$

Naïve Idea

- **binarize NN output x into Boolean values $b(x)$.**

Continuous Space



Discrete Space

Example

[0.3, 0.1, 0.9]

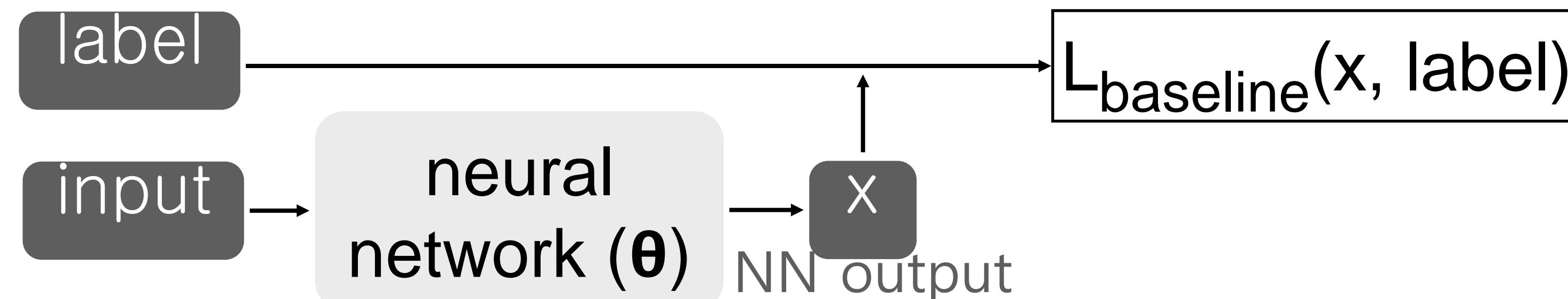
[0, 0, 1]

$p \vee \neg q \vee r$
 $\neg p \vee q$

Naïve Idea

- binarize NN output x into Boolean values $b(x)$.

Continuous Space



Discrete Space

$$b(x) = \begin{cases} 1 & \text{if } x \geq 0.5, \\ 0 & \text{else.} \end{cases}$$

Logical Formulas with Symbols

Example

[0.3, 0.1, 0.9]

[0, 0, 1]

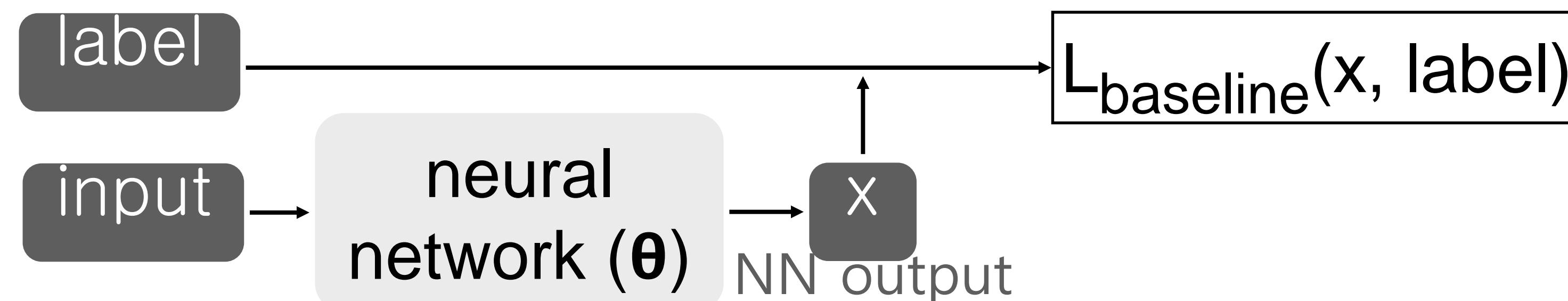
$p \vee \neg q \vee r$
 $\neg p \vee q$

$$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial b(x)} \times \frac{\partial b(x)}{\partial x} \times \frac{\partial x}{\partial \theta}$$

Naïve Idea

- binarize NN output x into Boolean values $b(x)$.

Continuous Space



Discrete Space

$$b(x) = \begin{cases} 1 & \text{if } x \geq 0.5, \\ 0 & \text{else.} \end{cases}$$

Logical Formulas with Symbols

$$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial b(x)} \times \frac{\partial b(x)}{\partial x} \times \frac{\partial x}{\partial \theta}$$

Example

[0.3, 0.1, 0.9]

[0, 0, 1]

$p \vee \neg q \vee r$
 $\neg p \vee q$

0 whenever differentiable

Existing Methods to Link NN and Constraints

- Probability
 - Loss: $-\log(\Pr(S))$ where S denotes all satisfying states
 - Problem: NP-hard (large circuit, enumerate all proofs or stable models)
 - Example: Semantic Loss, DeepProbLog, NeurASP, NeuroLog, etc
- Fuzzy value
 - Loss: $-\text{Fuzzy}(F)$ where F is a set of logic formulas
 - Problem: Alters the logical properties of the original theory
 - Example: Logic Tensor Network, Semantic Based Regularization, etc

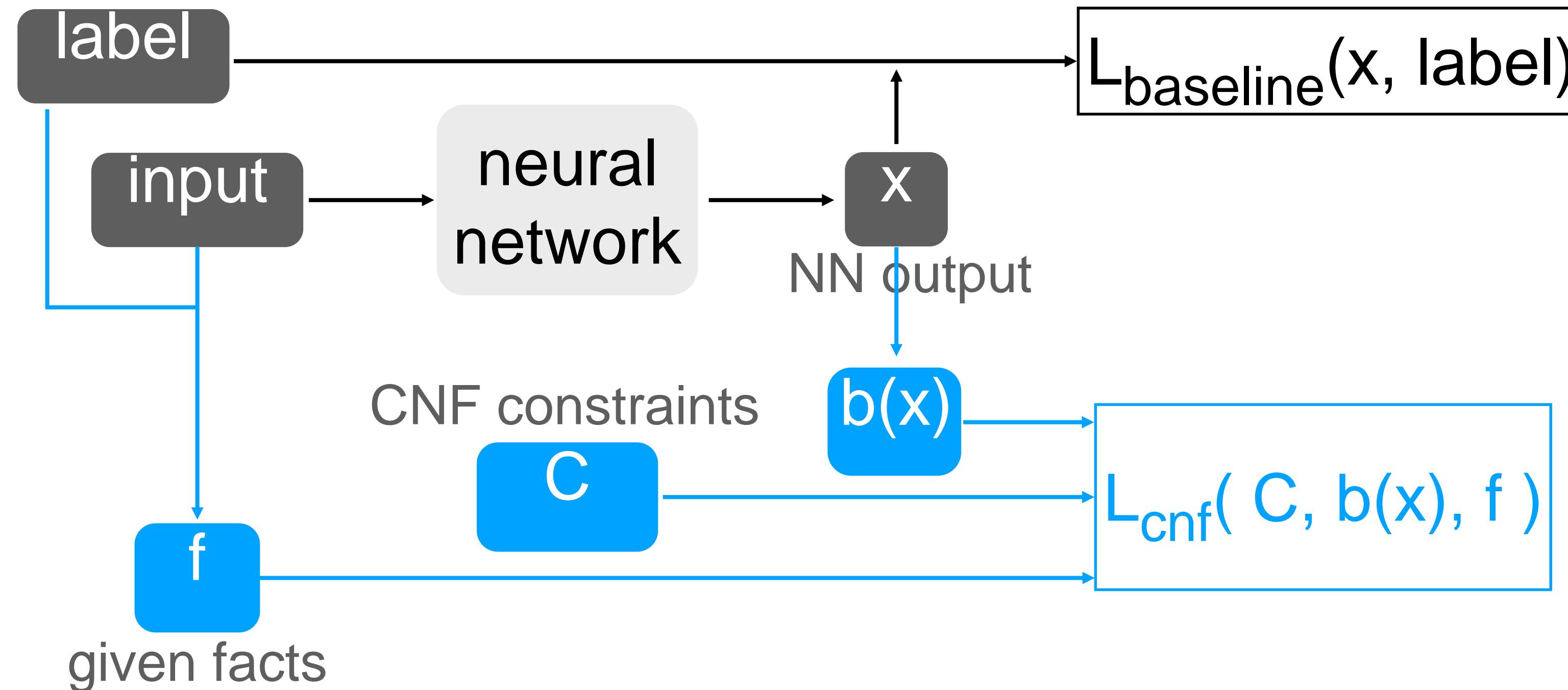
Straight-Through Estimators (STE)

- Originally introduced to train binary neural network [Courbariaux et al., 2015]
- The idea is to replace $\frac{\partial b(x)}{\partial x}$ with $\frac{\partial s(x)}{\partial x}$ where $s(x)$ is a meaningfully differentiable function, e.g., $s(x) = x$.

$$\frac{\partial L}{\partial \theta} \approx \frac{\partial L}{\partial b(x)} \times \frac{\partial s(x)}{\partial x} \times \frac{\partial x}{\partial \theta}$$

1 when $s(x)=x$

Our Approach: Constraint Loss via STE (CL-STE)



Constraint Loss L_{cnf}

$$\mathbf{L}_f = \mathbf{C} \odot \mathbf{f} \quad (1)$$

$$\mathbf{L}_v = \mathbb{1}_{\{1\}}(\mathbf{C}) \odot \mathbf{v} + \mathbb{1}_{\{-1\}}(\mathbf{C}) \odot (1 - \mathbf{v}) \quad (2)$$

$$\mathbf{deduce} = \mathbb{1}_{\{1\}} \left(\text{sum}(\mathbf{C} \odot \mathbf{C}) - \text{sum}(\mathbb{1}_{\{-1\}}(\mathbf{L}_f)) \right) \quad (3)$$

$$\mathbf{unsat} = \text{prod}(1 - \mathbf{L}_v) \quad (4)$$

$$\mathbf{keep} = \text{sum}(\mathbb{1}_{\{1\}}(\mathbf{L}_v) \odot (1 - \mathbf{L}_v) + \mathbb{1}_{\{0\}}(\mathbf{L}_v) \odot \mathbf{L}_v) \quad (5)$$

$$L_{\text{deduce}} = \text{sum}(\mathbf{deduce} \odot \mathbf{unsat}) \quad (6)$$

$$L_{\text{unsat}} = \text{avg}(\mathbb{1}_{\{1\}}(\mathbf{unsat}) \odot \mathbf{unsat}) \quad (7)$$

$$L_{\text{sat}} = \text{avg}(\mathbb{1}_{\{0\}}(\mathbf{unsat}) \odot \mathbf{keep}) \quad (8)$$

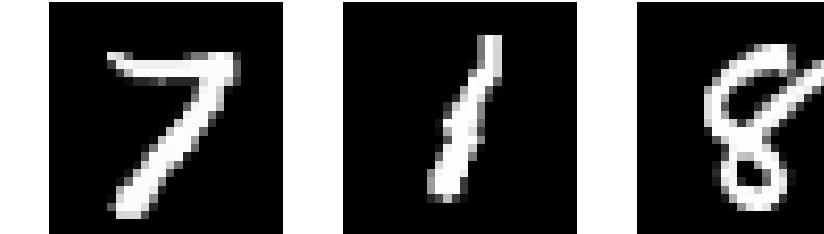
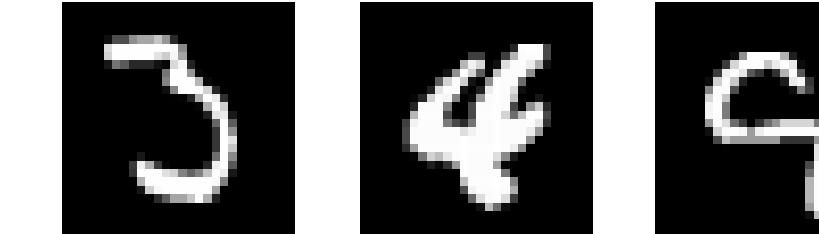
$$L_{\text{cnf}}(\mathbf{C}, \mathbf{v}, \mathbf{f}) = L_{\text{deduce}} + L_{\text{unsat}} + L_{\text{sat}} \quad (9)$$

L_{cnf} has 3 components

- Minimizing L_{deduce} makes the NN take a deduction step.
- Minimizing L_{unsat} makes the NN change its predictions to decrease the number of unsatisfied clauses.
- Minimizing L_{sat} makes the NN more confident in its predictions in the satisfied clauses.

CL-STE Advantages

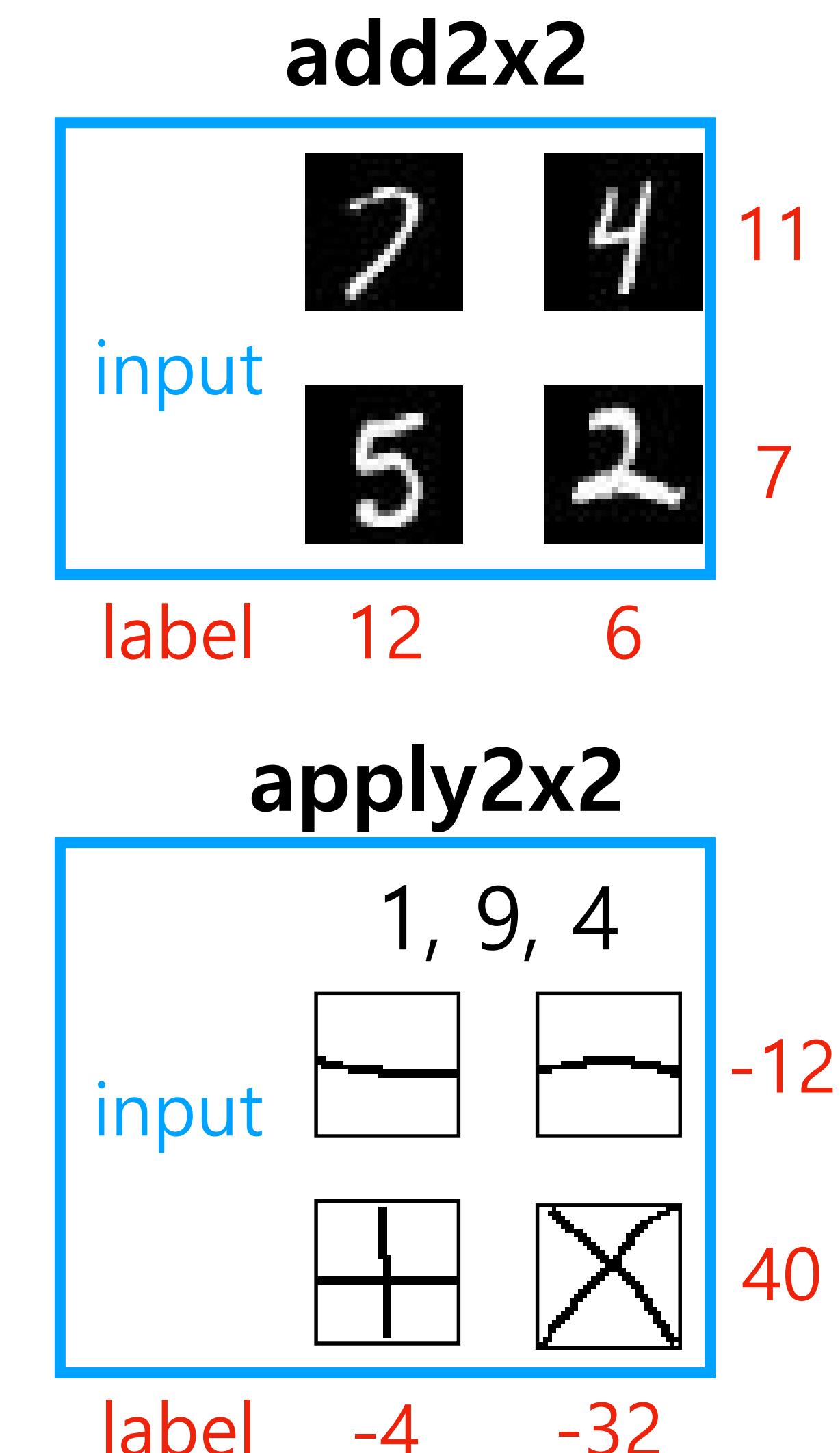
- Much more scalable by leveraging GPU and batch training
 - Ex. mnistAdd-3 problem: given two numbers (each formed by 3 digit images) and their sum as the label, the goal is to train an MNIST classifier.

input
 +  = 1067
label

	mnistAdd-1	mnistAdd-2	mnistAdd-3
DeepProbLog	98.36% 2565s	97.57% 22699s	timeout (>24h)
NeurASP	97.87% 292s	97.85% 1682s	timeout (>24h)
CL-STE	97.48% 22s	98.12% 92s	97.78% 402s

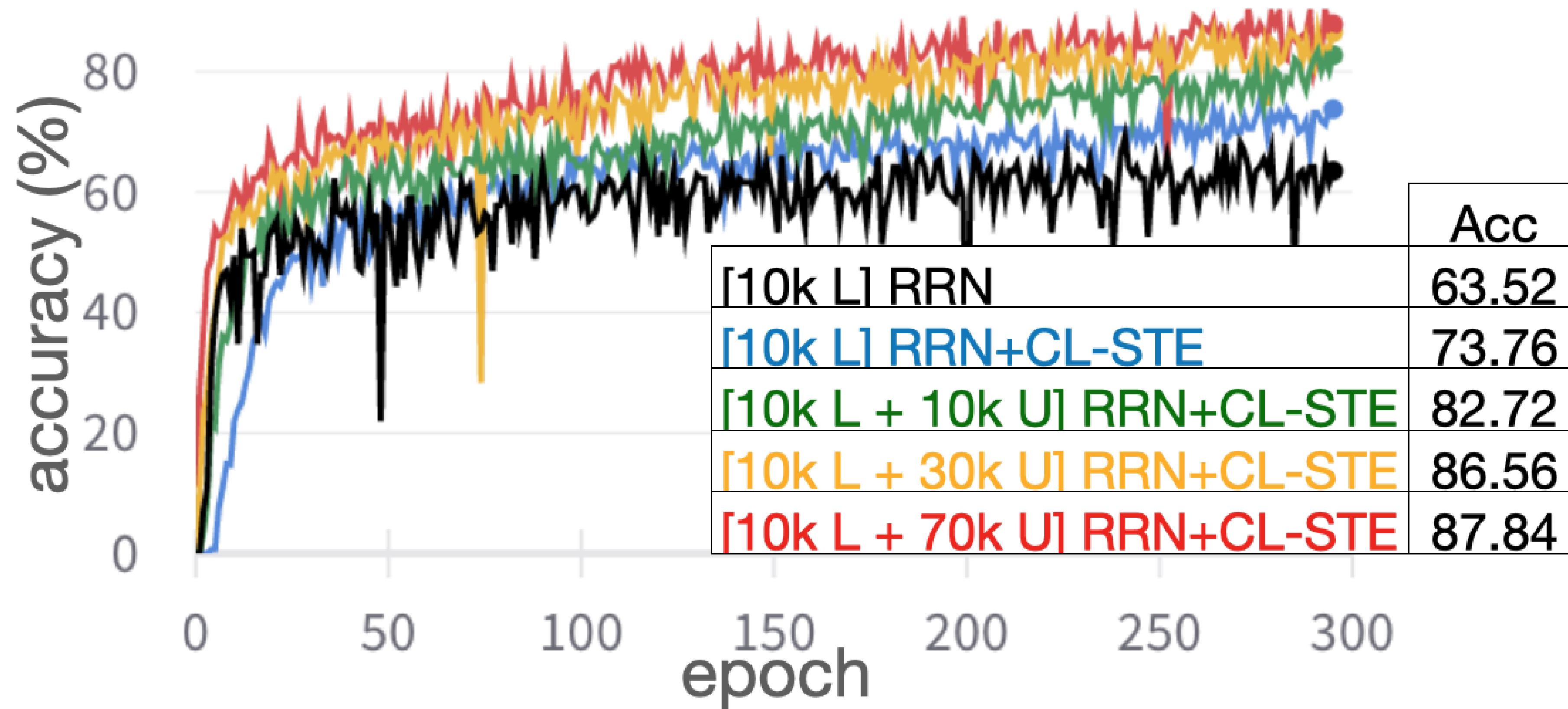
CL-STE: Higher Scalability Across Benchmarks

	add2x2	apply2x2	member(3)	member(5)
accuracy(%)				
DeepProbLog	88.4±0.7	100±0	96.3±0.3	timeout
NeuroLog	97.5±0.4	100±0	94.5±1.5	93.9±1.5
NeurASP	97.6±0.2	100±0	93.5±0.9	timeout
CL-STE	98.0±0.2	100±0	95.5±0.7	95.0±0.5
time(s)				
DeepProbLog	1035±71	586±9	2218±211	timeout
NeuroLog	2400±46	2428±29	427±12	682±40
NeurASP	142±2	47±1	253±1	timeout
CL-STE	54±4	112±2	43±3	49±4



CL-STE on Semi-Supervised Learning

- Under semi-supervised setting, more unlabeled data, bigger improvement.
 - CL-STE helps to train Recurrent Relational Network (a GNN) better on textual Sudoku problem



Summary

- CL-STE encodes CNF formulas into a loss function on discretized NN outputs where
 - the STE method makes a binarization function meaningfully differentiable,
 - by leveraging GPUs and batch training, CL-STE scales significantly better compared to state-of-the-art neuro-symbolic methods,
 - CL-STE works well with both labeled and unlabeled data, and with different types of NNs: MLP, CNN, and GNN.

Thank you!