

Active Sampling for Min-Max Fairness

Jacob Abernethy ¹ Pranjal Awasthi ² Matthäus Kleindessner ³
Jamie Morgenstern ⁴ Chris Russell ³ Jie Zhang ⁴

¹ Georgia Tech, USA

²Google, USA

³Amazon Web Services, Germany

⁴University of Washington, USA

Motivation for Min-Max Fairness and Related Work

- "Level-down", "Unnecessary harm": (Ustun et al., 2019)
Unnecessarily reduce performance on better-off groups and overall performance
- "Level-up" - Min-max Fairness
Only degrade performance of a group if it improves on the worst-off group
 - Martinez et al., 2020
Min-max Pareto optimal classifier, no convergence guarantee
 - Diana et al, 2021
Re-solve on all data in each iteration
 - **Advantage of Our Work**
Simplicity, $1/\sqrt{T}$ and $1/T$ convergence guarantee

Min-Max Fair Model

Define: ℓ is a loss function; f_θ is a model; $\theta \in \Theta \subset \mathbb{R}^d$;

g is a set of demographic groups; D_i is a group specific distribution;

$$v(\theta; D) := \mathbb{E}_{z \sim D} \ell(f_\theta, z).$$

Goal: learn θ^* that satisfies:

$$\max_{i \in [g]} v(\theta^*; D_i) = \inf_{\theta \in \Theta} \max_{i \in [g]} v(\theta; D_i).$$

Our Algorithm (convergence rate $1/\sqrt{T}$)

Algorithm 1 Min-max Stochastic Gradient Descent

Init: $\theta_1 \in \Theta$ arbitrary

for $t = 1 \dots T - 1$ **do**

 compute $i_t = \operatorname{argmax}_{i \in [g]} v(\theta_t; \hat{D}_i)$

 sample $z_t \sim D_{i_t}$

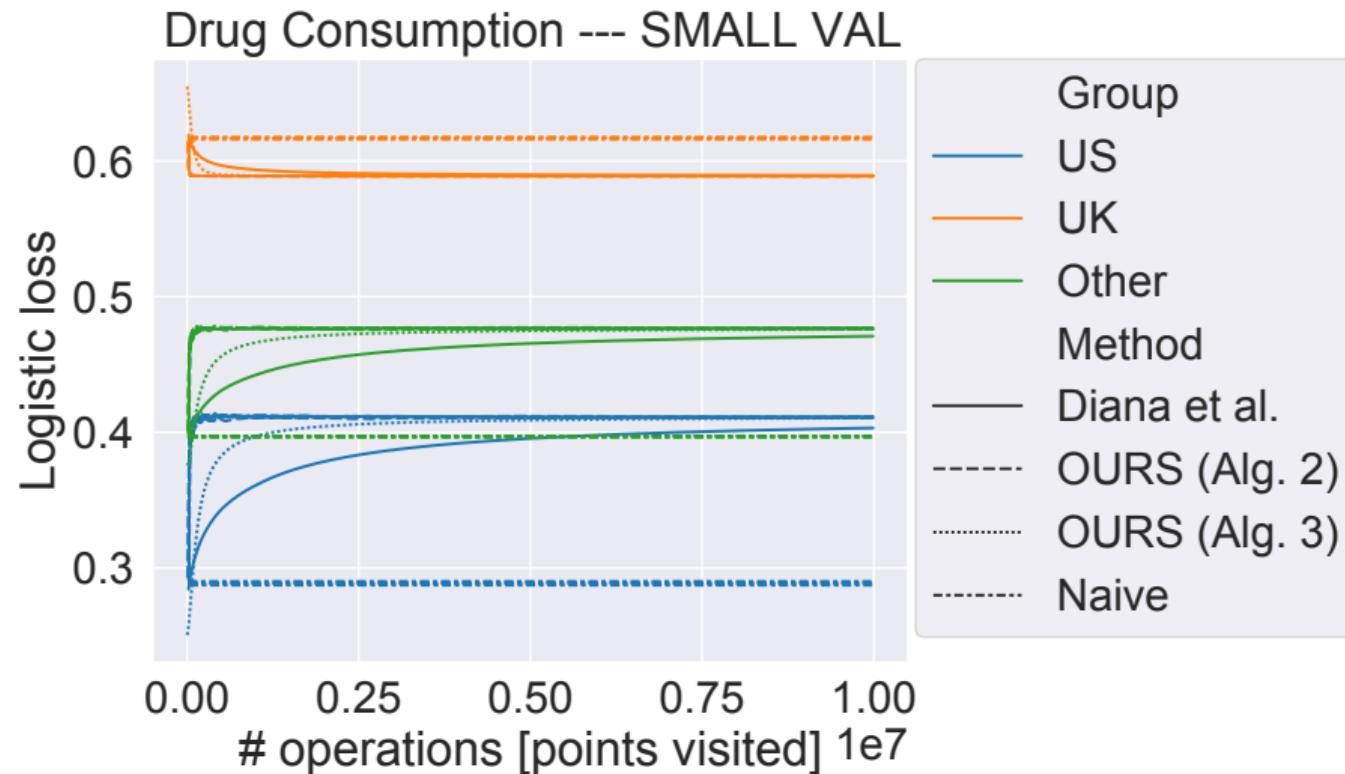
 compute $\nabla_t \leftarrow \nabla_{\theta} \ell(f_{\theta_t}; z_t)$

 update $\theta_{t+1} \leftarrow \operatorname{PROJ}_{\Theta}(\theta_t - \eta \nabla_t)$

end for

return $\bar{\theta}_T = \frac{\sum_{t=1}^T \theta_t}{T}$

Experiments - Drug Consumption Data



Experiments - Drug Consumption Data

	US	UK	Other	Overall
Diana et al. (2021)	0.4035	0.5894	0.4710	0.5166
Martinez et al. (2020)	0.4122	0.5889	0.4771	0.5198
OURS (Alg. 2 with TRAIN=VAL; Avg. over 5 runs)	0.4114	0.5889	0.4766	0.5195
OURS (Alg. 2 with SMALL VAL; Avg. over 5 runs)	0.4112	0.5889	0.4766	0.5195
OURS (Algorithm 3)	0.4108	0.5889	0.4761	0.5193
Log loss				
Diana et al. (2021)	0.1566	0.2964	0.2173	0.2432
Martinez et al. (2020)	0.1598	0.2950	0.2183	0.2435
OURS (Alg. 2 with TRAIN=VAL; Avg. over 5 runs)	0.1634	0.2971	0.2218	0.2463
OURS (Alg. 2 with SMALL VAL; Avg. over 5 runs)	0.1601	0.2960	0.2211	0.2446
OURS (Algorithm 3)	0.1598	0.2960	0.2183	0.2440
0.1 loss				

Algorithm 2. (Average) Per-group losses and errors as well as overall losses and errors from the final iteration are shown in the table. For every method, the maximum loss / error among the groups is shown in bold.