

Double Sampling Randomized Smoothing

Linyi Li (UIUC), Jiawei Zhang (UIUC), Tao Xie (Peking University), Bo Li (UIUC)

Background: Randomized Smoothing

• Train an NN f (the "base classifier") under Gaussian data corruption

• Then, smooth *f* into a new classifier *g* (the "smoothed classifier"), defined as follows:

Classical Randomized Smoothing

- g(x) = the most probable prediction by f under random Gaussian corruptions of x
- Example:
 - Consider the input x with label panda.
 - Suppose that when f classifies $N(x, \sigma^2 I)$:
 - Panda is returned with probability 0.80
 - Gibbon is returned with probability 0.15
 - Cat is returned with probability 0.05
 - Then g(x) = panda

Robustness Guarantee of Classical Randomized Smoothing

- Let P_A be the probability of the top class (panda)
- Then g probably returns the top-class panda within an ℓ_2 ball around x of radius

$$R = \sigma \Phi^{-1}(P_A)$$

• Where Φ^{-1} is the inverse standard Gaussian CDF

Can we achieve better certified robustness?

Improving classical RS is a hot research topic these years

- Improving smoothing distribution
 - Uniform smoothing > Gaussian smoothing for ℓ_1 [ICML 2020, Yang et al]
 - Generalized Gaussian smoothing > Gaussian smoothing for ℓ_2 [NeurIPS 2020, Zhang et al]
 - Dimention-dependent discrete smoothing achieves SOTA for ℓ_1 [ICML 2021, Levine et al]
 - ...
- Improving training
 - SmoothAdv [NeurIPS 2019, Salman et al]
 - MACER [ICLR 2020, Zhai et al]
 - DRT [ICLR 2022, Yang et al]
 - •

Can we improve the certification itself?

Negative results:

- RS may be unable to certify high ℓ_{∞} robustness
 - [Yang et al, ICML 2020] [Blum et al, JMLR 2020] [Kumar et al, ICML 2020] [Wu et al, AISTATS 2021] ...
 - Since certified radius under ℓ_2 is almost constant w.r.t. input dim. d
 - ightharpoonup Shrinking radius r_{ℓ_2}/\sqrt{d} under ℓ_{∞}
- However, this barrier **only** holds for RS certification using top-class prob.
- Use more information in RS certification may be able to circumvent the barrier!

DSRS Pipeline

Theoretical Benefits of DSRS

- Common classifiers satisfies concentration property
 - Correct prediction prob. is high when adding small magnitude (in terms of ℓ_2) noises

(On ImageNet)

• *(Informal, Theorem 2) Suppose ideal concentration property holds, if we use generalized Gaussian for smoothign, the ℓ_2 certified radius of DSRS:

$$r_{DSRS} \geq 0.02\sigma\sqrt{d}$$

 \triangleright Translates to constant ℓ_{∞} radius and circumvents the well-known ℓ_{∞} -barrier!

Empirical Benefits of DSRS

 Consistent certified radius improvement on MNIST, CIFAR-10, and ImageNet

Training Method	Certification	MNIST	CIFAR-10	ImageNet
Gaussian Augmentation	Neyman-Pearson	1.550	0.447	0.677
	DSRS	1.629	0.469	0.750
	Relative Improvement	+5.10%	+4.92%	+10.78%
Consistency	Neyman-Pearson	1.645	0.636	0.796
	DSRS	1.730	0.659	0.862
	Relative Improvement	+5.17%	+3.62%	+8.29%
SmoothMix	Neyman-Pearson	1.716	0.676	0.490
	DSRS	1.806	0.712	0.525
	Relative Improvement	+5.24%	+5.33%	+7.14%

• Large gain on average ℓ_2 certified radius:

5% - 6% on MNIST, 3% - 6% on CIFAR-10, 7% - 10% on ImageNet

Open Problems

- Better auxiliary smoothing distribution Q?
- Suitable training methods for DSRS?
- Efficient sampling with both $\mathcal P$ and $\mathcal Q$?

Thank you!

- Paper (latest version): arxiv.org/abs/2206.07912
- Code & Model & Data: github.com/llylly/DSRS