More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize

Alexander Wei

ICML 2022

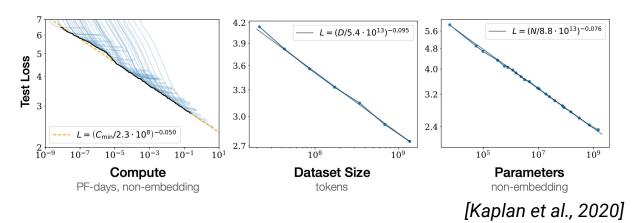
Wei Hu

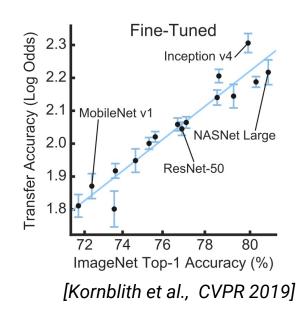
Jacob Steinhardt

A compelling theory of generalization should...

1. Accurately predict empirical phenomena

• E.g., scaling laws, pretraining >> random initialization

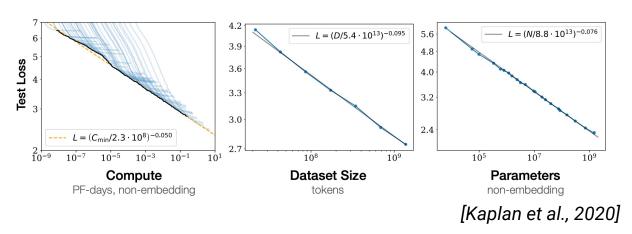


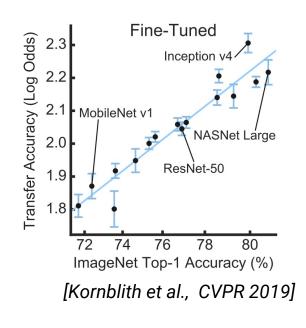


A compelling theory of generalization should...

1. Accurately predict empirical phenomena

• E.g., scaling laws, pretraining >> random initialization



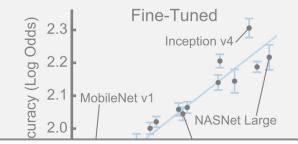


2. Precisely explain why these phenomena arise

Test error has no explanatory power—not a theory!

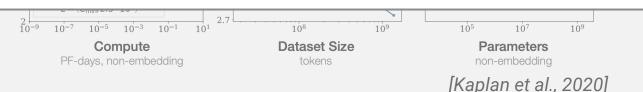
A compelling theory of generalization should...

- 1. Accurately predict empirical phenomena
 - E.g., scaling laws, pretraining >> random initialization



What mathematical foundations lead to such a theory?

 $L = (N/8.8 \cdot 10^{13})^{-0.095}$ 5.6



ImageNet Top-1 Accuracy (%)

[Kornblith et al., CVPR 2019]

2. Precisely explain why these phenomena arise

Test error has no explanatory power—not a theory!

NTK regression as a testbed for theories

NN-induced linear regression (ResNet NTK features on image data):

Achieves comparable performance to NNs

Configuration	Finetuning	eNTK	Last layer
CIFAR-10 / ResNet-18	4.3%	6.7%	14.0%
CIFAR-100 / ResNet-34	15.9%	19.0%	33.9%
Flowers-102 / ResNet-50	5.6%	7.0%	9.7%
Food-101 / ResNet-101	15.3%	21.3%	33.7%

NTK regression as a testbed for theories

NN-induced linear regression (ResNet NTK features on image data):

Achieves comparable performance to NNs

Configuration	Finetuning	eNTK	Last layer
CIFAR-10 / ResNet-18	4.3%	6.7%	14.0%
CIFAR-100 / ResNet-34	15.9%	19.0%	33.9%
Flowers-102 / ResNet-50	5.6%	7.0%	9.7%
Food-101 / ResNet-101	15.3%	21.3%	33.7%

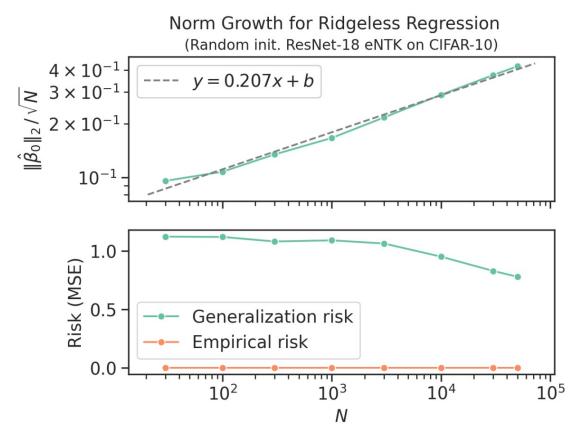
NTK regression as a testbed for theories

NN-induced linear regression (ResNet NTK features on image data):

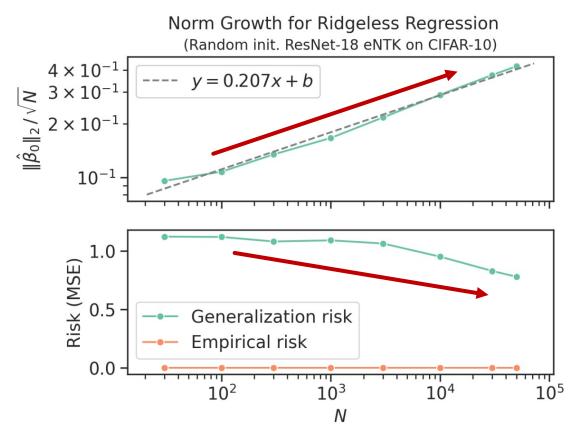
Achieves comparable performance to NNs

Configuration	Finetuning	eNTK	Last layer
CIFAR-10 / ResNet-18	4.3%	6.7%	14.0%
CIFAR-100 / ResNet-34	15.9%	19.0%	33.9%
Flowers-102 / ResNet-50	5.6%	7.0%	9.7%
Food-101 / ResNet-101	15.3%	21.3%	33.7%

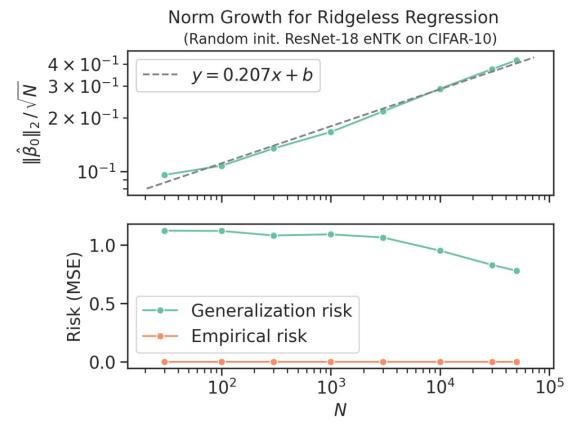
- Exhibits many of the same empirical phenomena
 - Power-law scaling; effect of pretraining



Norm-based generalization bounds: **predict wrong sign** as *N* increases!



Norm-based generalization bounds: **predict wrong sign** as *N* increases!

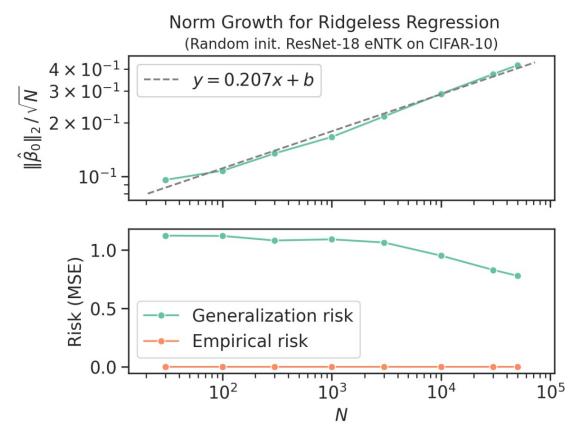


Norm-based generalization bounds: **predict wrong sign** as *N* increases!

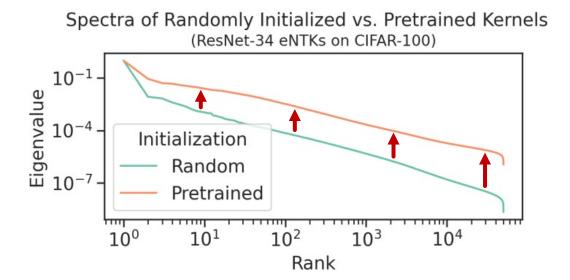


Spectral generalization bounds: randomly initialized to pretrained representations

→ increased effective dimension!



Norm-based generalization bounds: predict wrong sign as N increases!



Spectral generalization bounds: randomly initialized to pretrained representations

→ increased effective dimension!

The random matrix theory perspective

We prove that the GCV estimator [Craven and Wahba, 1978] predicts linear regression generalization under a random matrix hypothesis ...

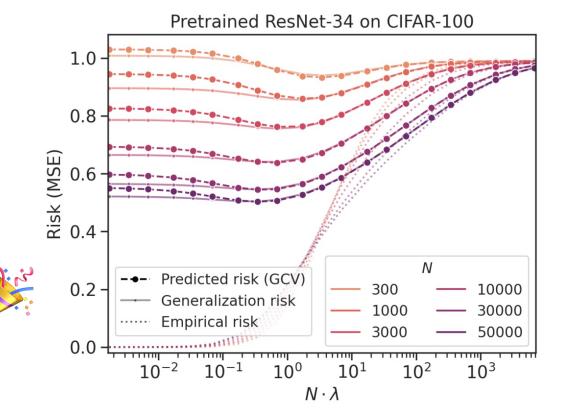
$$\mathrm{GCV}_{\lambda} \coloneqq \left(\frac{1}{N} \sum_{i=1}^{N} \frac{\lambda}{\lambda + \hat{\lambda}_i} \right)^{-2} \mathcal{R}_{\mathrm{empirical}}(\hat{\beta}_{\lambda})$$

The random matrix theory perspective

We prove that the GCV estimator [Craven and Wahba, 1978] predicts linear regression generalization under a random matrix hypothesis ...

$$\operatorname{GCV}_{\lambda} \coloneqq \left(\frac{1}{N} \sum_{i=1}^{N} \frac{\lambda}{\lambda + \hat{\lambda}_{i}}\right)^{-2} \mathcal{R}_{\operatorname{empirical}}(\hat{\beta}_{\lambda})$$

... and find it to be empirically accurate



Empirical phenomena via random matrices

We predict scaling law rates ...

Verify eigendecay exponent + alignment exponent ≈ scaling exponent

[Cui et al., NeurIPS 2021]

between eigenvectors and ground truth

Empirical phenomena via random matrices

We predict scaling law rates ...

• Verify eigendecay exponent + alignment exponent ≈ scaling exponent [Cui et al., NeurIPS 2021]

between eigenvectors and ground truth

... and investigate the role of pretraining in generalization

Better alignment prevails over slower eigendecay / high effective dim

Summary

What makes a compelling scientific theory of high-dimensional models?

Accuracy in qualitative phenomena, precision in explanations

We find random matrix theory predicts empirical phenomena (even when more classical approaches fail)

Setting: linear regression + ResNet NTK features + image data

Apply toward understanding scaling laws, role of pretraining