Efficient Test-Time Model Adaptation without Forgetting

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao and Mingkui Tan

> South China University of Technology, Tencent AI Lab, National University of Singapore

- Active Sample Selection for Adaptation
- Anti-forgetting Weight Regularization

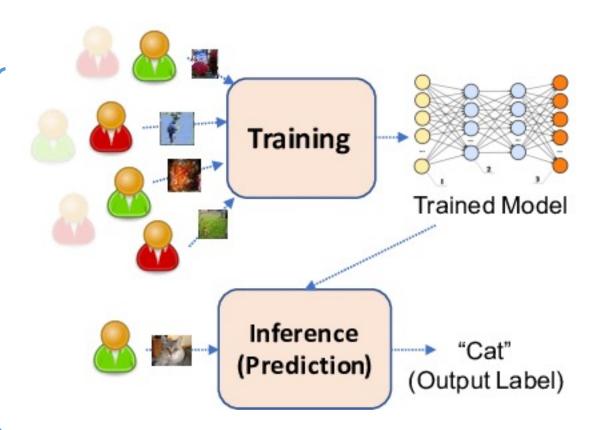
Experimental Results

Active Sample Selection for Adaptation
 Anti-forgetting Weight Regularization

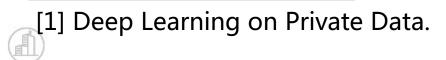
Experimental Results

Background: Deep Learning Pipeline and Data Shifts

Distribution shift often exists between training and testing data!



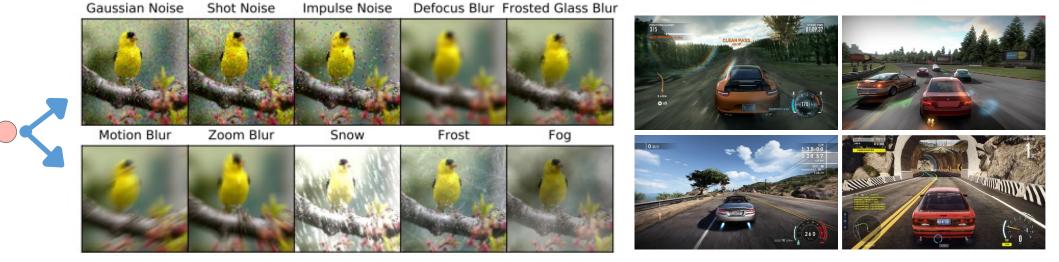
An overview of training and Inference in DL [1]



Background: Data Shifts

Test samples may encounter natural variations or corruptions (also called distribution shifts), such as:

- Changes in lighting resulting from weather change
- Unexpected noises resulting from sensor degradation, etc.



ImageNet-C (Hendrycks & Dietterich, 2019)

Unfortunately, models are very sensitive to such shifts, and suffer from severe performance degradation!

Methods for Overcoming Data Shifts

Training-time generalization seek to anticipate shifts at training phase:

- Domain generalization
- Data augmentation techniques

It is hard to anticipate all possible shifts!

□ Test-time adaptation methods (will exploit testing data):

Setting	Source data	Target data	Training loss	Testing loss	Offline	Online
Fine-tuning	×	\mathbf{x}^t , \mathbf{y}^t	$\mathcal{L}(\mathbf{x}^t, \mathbf{y}^t)$			×
UDA	x ^s , y ^s	\mathbf{x}^t	$\mathcal{L}(\mathbf{x}^{s}, \mathbf{y}^{s}) + \mathcal{L}(\mathbf{x}^{s}, \mathbf{x}^{t})$			×
Test-time training	x ^s , y ^s	x ^t	$\mathcal{L}(\mathbf{x}^{s}, y^{s}) + \mathcal{L}(\mathbf{x}^{s})$	$\mathcal{L}(\mathbf{x}^t)$	×	
Fully TTA	×	x ^t	×	$\mathcal{L}(\mathbf{x}^t)$	×	

□ In this work, we study the Fully test-time adaptation (TTA) setting

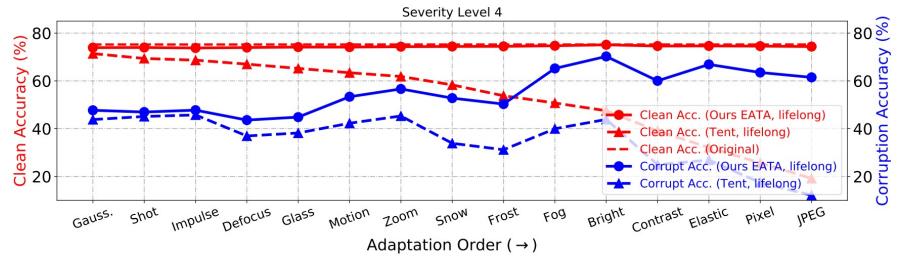
Does not alter model training process, adapt online, use only x^t

Limitations of Prior Test-Time Adaptation Methods

Efficiency: perform adaptation for all samples is expensive

On ImageNet-C, Gauss. Level 5	# Forward	# Backward
Standard Inference	50,000	0
TTT (Sun et al., 2020)	$50,000 \times 65$	$50,000 \times 64$
Tent (Wang et al., 2021)	50,000	50,000
EATA (ours)	50,000	<20,000

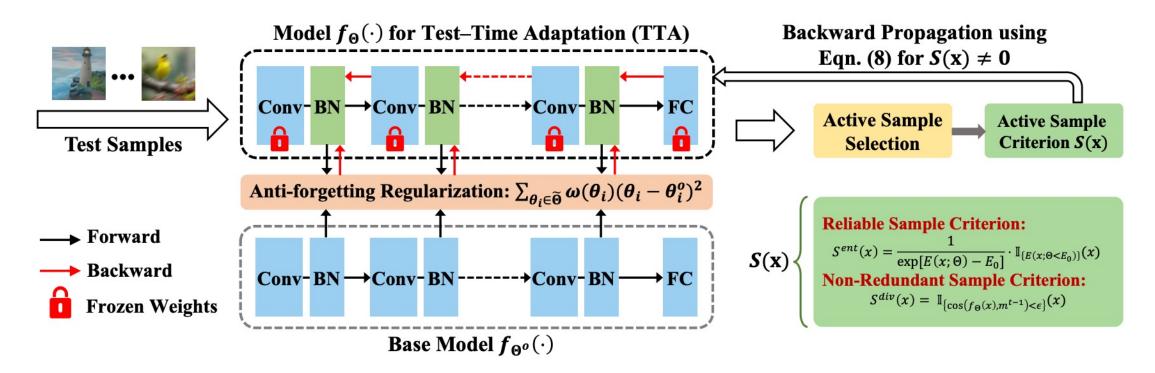
Forgetting: performance degradation on in-distribution test data after adaptation on out-of-distribution test data



9

Active Sample Selection for Adaptation
 Anti-forgetting Weight Regularization

Experimental Results



\Box Selective adaptation S(x) to improve efficiency:

Active sample selection

```
\Box Weight regularization \mathcal{R}(\cdot) to prevent forgetting:
```

• Fisher regularizer

```
\min_{\tilde{\Theta}} S(\mathbf{x}) E(\mathbf{x}; \Theta) + \beta \mathcal{R}(\tilde{\Theta}, \tilde{\Theta}^o)
```

11

Active Sample Selection

Samples for adaptation should be reliable:

- Adaptation on low-entropy samples makes more contribution than highentropy ones
- Adaptation on test samples with very high entropy may hurt performance

$$S^{ent}(\mathbf{x}) = \frac{1}{\exp\left[E(\mathbf{x};\Theta) - E_0\right]} \cdot \mathbb{I}_{\{E(\mathbf{x};\Theta) < E_0\}}(\mathbf{x})$$

 $E(\mathbf{x}; \Theta)$ is the entropy of sample x and E_0 is a threshold

Effect of different samples in test-time entropy minimization (Tent)

Active Sample Selection

Given Samples for adaptation should be non-redundant:

- Adaptation with samples that produce similar gradients are unnecessary
- Ensure the remaining samples have diverse model outputs/gradients

$$S^{div}\left(\mathbf{x}\right) = \mathbb{I}_{\left\{cos(f_{\Theta}(\mathbf{x}), \mathbf{m}^{t-1}) < \epsilon\right\}}\left(\mathbf{x}\right), \quad \mathbf{m}^{t} = \left\{\begin{array}{l} \bar{\mathbf{y}}^{1}, & \text{if } t = 1\\ \alpha \bar{\mathbf{y}}^{t} + (1-\alpha)\mathbf{m}^{t-1}, & \text{if } t > 1 \end{array}\right.$$

Moving average of previous samples' outputs

In sum,

$$S\left(\mathbf{x}\right) = S^{ent}\left(\mathbf{x}\right) \cdot S^{div}\left(\mathbf{x}\right)$$

Anti-forgetting Weight Regularization

□ Ensure (OOD) adapted model works well on ID and OOD data simultaneously

• Prevent important parameters (for ID domain) from changing too much

$$\mathcal{R}(\tilde{\Theta}, \tilde{\Theta}^o) = \sum_{\theta_i \in \tilde{\Theta}} \omega(\theta_i) (heta_i - heta_i^o)^2$$

- θ_i^o is the original parameter
- $\tilde{\Theta}$ denote affine parameters of BN layers
- $\omega(\theta_i)$ measures weight importance (using Fisher) through a small set of ID pseudo-labeled test samples \mathcal{D}_F

$$\omega(\theta_i) = \frac{1}{Q} \sum_{\mathbf{x}_q \in \mathcal{D}_F} \left(\frac{\partial}{\partial \theta_i^o} \mathcal{L}_{CE}(f_{\Theta^o}(\mathbf{x}_q), \hat{y}_q) \right)^2$$

Active Sample Selection for Adaptation
 Anti-forgetting Weight Regularization

Experimental Results

Comparison w.r.t. OOD Performance and Efficiency

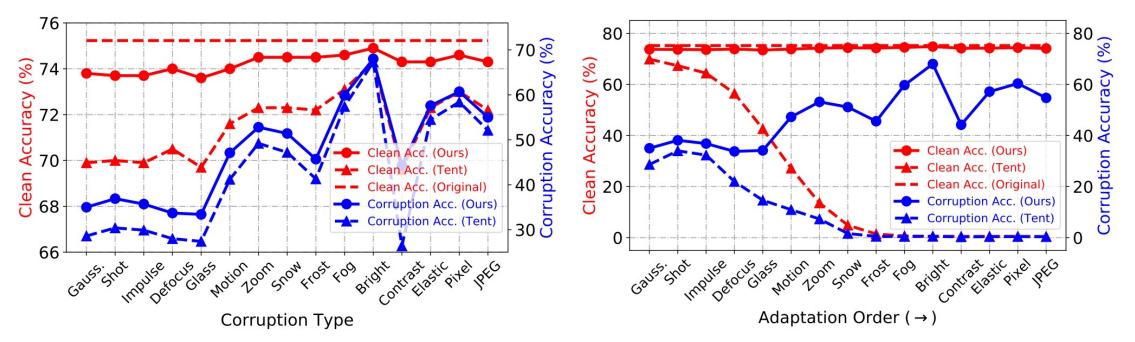
Results on ImageNet-C with severity level 5 regarding Corruption Error (%)

	Noise				Blur			Weather			Digital				Average		
Method	Gauss.	Shot	Impul.	Defoc.	Glass	Motion	Zoom	Snow	Frost	Fog	Brit.	Contr.	Elastic	Pixel	JPEG	#Forwards	#Backwards
R-50 (GN)+JT	94.9	95.1	94.2	88.9	91.7	86.7	81.6	82.5	81.8	80.6	49.2	87.4	76.9	79.2	68.5	50,000	0
• TTT	69.0	66.4	66.6	71.9	92.2	66.8	63.2	59.1	81.0	49.0	38.2	61.1	50.6	48.3	52.0	50,000×21	50,000×20
R-50 (BN)	97.8	97.1	98.2	82.1	90.2	85.2	77.5	83.1	76.7	75.6	41.1	94.6	83.1	79.4	68.4	50,000	0
• TTA	95.9	95.1	95.5	87.5	91.8	87.1	74.2	86.0	80.9	78.7	47.0	87.6	85.4	75.4	66.4	50,000×64	0
 BN adaptation 	84.5	83.9	83.7	80.0	80.0	71.5	60.0	65.2	65.0	51.5	34.1	75.9	54.2	49.3	58.9	50,000	0
• MEMO	92.5	91.3	91.0	80.3	87.0	79.3	72.4	74.7	71.2	67.9	39.0	89.0	76.2	67.0	62.5	50,000×65	50,000×64
• Tent	71.6	69.8	69.9	71.8	72.7	58.6	50.5	52.9	58.7	42.5	32.6	74.9	45.2	41.5	47.7	50,000	50,000
• Tent (episodic)	85.4	84.8	84.9	85.5	85.4	74.6	62.2	66.4	67.8	53.2	35.7	83.9	57.1	52.4	61.5	50,000×2	50,000
• ETA (ours)	64.9	<u>62.1</u>	<u>63.4</u>	66.1	67.1	52.2	47.4	48.1	54.2	39.9	32.1	55.0	42.1	39.1	<u>45.1</u>	50,000	26,031
• EATA (ours)	<u>65.0</u>	63.1	64.3	66.3	<u>66.6</u>	52.9	<u>47.2</u>	<u>48.6</u>	<u>54.3</u>	<u>40.1</u>	32.0	<u>55.7</u>	<u>42.4</u>	<u>39.3</u>	45.0	50,000	25,150
• EATA (lifelong)	<u>65.0</u>	61.9	63.2	<u>66.2</u>	65.8	<u>52.7</u>	46.8	48.9	54.4	40.3	32.0	55.8	42.8	39.6	45.3	50,000	28,243

① Consistently outperform considered methods w.r.t. error

- ② Outperform Tent but with less #Backwards, leading to higher efficiency
- ③ Show the potential of fully test-time adaptation (consistently better than TTT)

Demonstration of Preventing Forgetting



Results on ImageNet-C level 5. Left: the model parameters are reset after each corruption type. Right: parameters will never be reset.

 EATA consistently outperforms Tent regarding the OOD accuracy and maintains the clean accuracy (while Tent fails)

② The forgetting issue of Tent is much more severe in lifelong scenario

Active Sample Selection for Adaptation
 Anti-forgetting Weight Regularization

Experimental Results

Conclusion

Contributions:

- Propose an active sample identification scheme to filter out non-reliable and redundant test data from model adaptation
- Extend the label-dependent Fisher regularizer to test samples with pseudo label generation, preventing drastic changes in important model weights
- Demonstrate that EATA improves the efficiency of TTA and also alleviates the long-neglected catastrophic forgetting issue

Future directions:

• TTA on single test sample, various model architectures, etc.

Thank you for your attention!