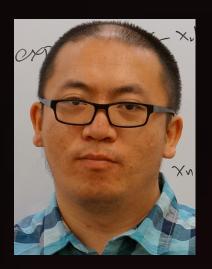
The Combinatorial Brain Surgeon:

Pruning Weights That Cancel One Another in Neural Networks



Xin Yu @ Univ. of Utah

Thiago Serra @ Bucknell Univ.

Srikumar Ramalingam @ Google Research

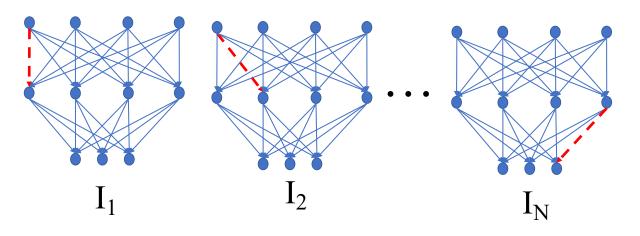
Shandian Zhe @ Univ. of Utah

Network Pruning / Sparsification

Given a well-trained neural network architecture, can we carefully remove an excess of weights which will produce a model with similar or even improved accuracy?

Impact-based methods:

Get impact of a single weight on the NN



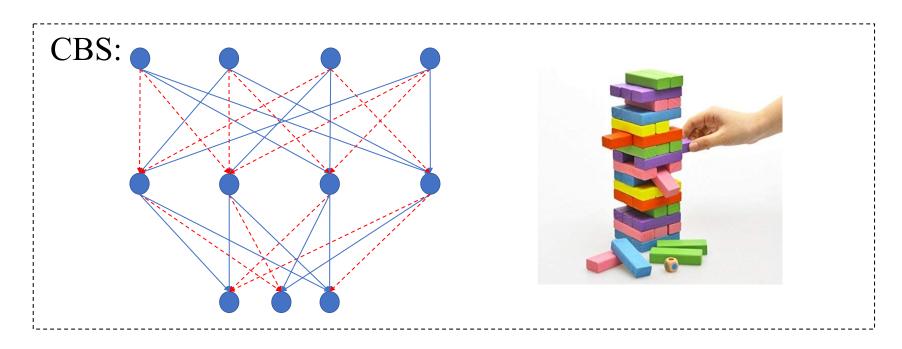
Remove the weights with smallest impact

$$I_{s1} \ge I_{s2} \ge I_{s3} \ge \dots \ge I_{sN}$$

$$I_{\{i,j\}} \neq I_i + I_j$$

Network Pruning / Sparsification

CBS(ours): study the combined effect of removing multiple weights simultaneously and obtain significantly better performance than removing each weight alone.



Dependency between weights are more important!

Network Pruning / Sparsification

Optimal Brain Damage(LeCun's 1990) and Optimal Brain Surgeon(Hassibi 1992)

Both OBD & OBS use the functional Taylor expansion of the loss function:

$$L(w) - L(\overline{w})$$

$$= (w - \overline{w})^T \nabla L(\overline{w}) + \frac{1}{2} (w - \overline{w})^T \nabla^2 L(\overline{w})(w - \overline{w}) + \frac{\partial (|w - \overline{w}||^3)}{\partial w}$$

Assume network is properly trained:

$$\nabla L(\overline{w}) = 0$$

• Assume w is sufficiently closed to \overline{w} :

$$O(||w-\overline{w}||^3)\approx 0$$

The Optimization Problem in OBS and WoodFisher

OBD: assumes that the Hessian $H := \nabla^2 L(\overline{w})$ is a diagonal matrix:

$$L(w) - L(\overline{w}) \approx \frac{1}{2} \sum_{i} (w_i - \overline{w}_i)^2 H_{i,i}$$

OBS: Not consider interdependency!

$$\min_{k \in [N]} \left\{ \begin{array}{l} \min_{w \in \mathbb{R}^N} \left\{ \frac{1}{2} \sum_{i} \sum_{j} (w_i - \overline{w}_i) H_{i,j}(w_j - \overline{w}_j) : w_k = 0 \right\} \right\}$$

While choosing one weight to prune...

we adjust the remaining weights to locally minimize the loss function

Woodfisher(Singh2020): Removing two weights is combinatorically explosive:

$$\min_{k_1,k_2 \in [N]} \left\{ \min_{w \in \mathbb{R}^N} \left\{ \frac{1}{2} \sum_{i} \sum_{j} (w_i - \overline{w}_i) H_{i,j}(w_j - \overline{w}_j) : w_{k_1} = 0, w_{k_2} = 0 \right\} \right\}$$

While choosing two weight to prune... (Their work also provides helpful guidance on approximating H^{-1} well)

The Combinatorial Brain Surgeon: Just MIP It!?

We formulate a Mixed Integer Quadratic Program for deciding

- (i) which weights to prune to achieve a given sparsity rate r; and
- (ii) how to adjust the unpruned weights:

$$\min \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (w_i - \overline{w}_i) \ H_{i,j} (w_j - \overline{w}_j)$$
s.t.
$$\sum_{i=1}^{N} y_i = \lceil r \ N \rceil$$

$$y_i = 1 \rightarrow w_i = 0 \quad \forall i \in [N]$$

$$y_i \in \{0,1\} \qquad \forall i \in [N]$$

$$w_i \in \mathbb{R} \qquad \forall i \in [N]$$

CBS Selection (CBS-S)

Since CBS is very challenging, we focus on the selection of weights to prune:

$$\min \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{w}_i y_i \ H_{i,j} \ \overline{w}_j y_j \leftarrow A_{i,j} = \overline{w}_i H_{i,j} \ \overline{w}_j$$
 Each term captures the combined effect of pruning both w_i and w_j
$$y_i \in \{0,1\} \qquad \forall i \in [N]$$

CBS-S alone is still a challenging problem, but one in which we could potentially leverage the interdependency between pruned weights

Assuming we have a good initial pruning selection, we swap pruned weights and unpruned weights to optimize the CBS-S objective.

- Local Search only requires linear times swaps instead of quadratic!
- Each swap is computationally efficient: swapping a pruned weight $w_i, i \in \mathbb{P}$ with an unpruned weight $w_j, j \in \overline{\mathbb{P}}$

	A_{1i}	A_{1j}	
A_{i1}	A_{ii}	A_{ij}	A_{iN}
A_{j1}	A_{ji}	A_{jj}	A_{jN}
	A_{Ni}	A_{Nj}	

$$A_{i,j} = \overline{w}_i H_{i,j} \ \overline{w}_j$$

Assuming we have a good initial pruning selection, we swap pruned weights and unpruned weights to optimize the CBS-S objective.

- Local Search only requires linear times swaps instead of quadratic!
- Each swap is computationally efficient: swapping a pruned weight $w_i, i \in \mathbb{P}$ with an unpruned weight $w_j, j \in \overline{\mathbb{P}}$

	A_{1i}	A_{1j}	
A_{i1}	A_{ii}	A_{ij}	A_{iN}
A_{j1}	A_{ji}	A_{jj}	A_{jN}
	A_{Ni}	A_{Nj}	

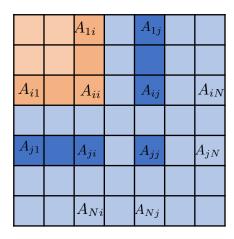
$$A_{i,j} = \overline{w}_i H_{i,j} \ \overline{w}_j$$

Cost of keeping
$$i$$
 in \mathbb{P} : $\alpha_i \propto A_{i,i} + \sum_{j \in \mathbb{P}, j \neq i} (A_{i,j} + A_{j,i})$

 $A_{i,j}$ matters to the objective function only if both i and j are selected

Assuming we have a good initial pruning selection, we swap pruned weights and unpruned weights to optimize the CBS-S objective.

- Local Search only requires linear times swaps instead of quadratic!
- Each swap is computationally efficient: swapping a pruned weight $w_i, i \in \mathbb{P}$ with an unpruned weight $w_i, j \in \overline{\mathbb{P}}$



$$A_{i,j} = \overline{w}_i H_{i,j} \ \overline{w}_j$$

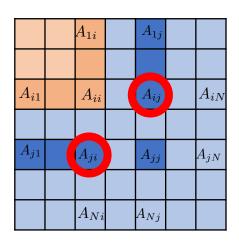
Cost of keeping
$$i$$
 in \mathbb{P} : $\alpha_i \propto A_{i,i} + \sum_{j \in \mathbb{P}, j \neq i} (A_{i,j} + A_{j,i})$

Cost of adding
$$j$$
 to \mathbb{P} : $\beta_j \propto A_{j,j} + \sum_{i \in \mathbb{P}} (A_{i,j} + A_{j,i})$

 $A_{i,j}$ matters to the objective function only if both i and j are selected

Assuming we have a good initial pruning selection, we swap pruned weights and unpruned weights to optimize the CBS-S objective.

- Local Search only requires linear times swaps instead of quadratic!
- Each swap is computationally efficient: swapping a pruned weight $w_i, i \in \mathbb{P}$ with an unpruned weight $w_i, j \in \overline{\mathbb{P}}$



$$A_{i,j} = \overline{w}_i H_{i,j} \ \overline{w}_j$$

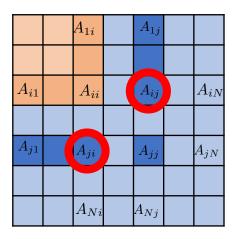
Cost of keeping
$$i$$
 in \mathbb{P} : $\alpha_i \propto A_{i,i} + \sum_{j \in \mathbb{P}, j \neq i} (A_{i,j} + A_{j,i})$

Cost of adding
$$j$$
 to \mathbb{P} : $\beta_j \propto A_{j,j} + \sum_{i \in \mathbb{P}} (A_{i,j} + A_{j,i})$

Cost associated with keeping both: $\gamma_{i,j} \propto A_{i,j} + A_{j,i}$

Assuming we have a good initial pruning selection, we swap pruned weights and unpruned weights to optimize the CBS-S objective.

- Local Search only requires linear times swaps instead of quadratic!
- Each swap is computationally efficient: swapping a pruned weight $w_i, i \in \mathbb{P}$ with an unpruned weight $w_i, j \in \overline{\mathbb{P}}$



$$A_{i,j} = \overline{w}_i H_{i,j} \ \overline{w}_j$$

Cost of keeping
$$i$$
 in \mathbb{P} : $\alpha_i \propto A_{i,i} + \sum_{j \in \mathbb{P}, j \neq i} (A_{i,j} + A_{j,i})$

Cost of adding
$$j$$
 to \mathbb{P} : $\beta_j \propto A_{j,j} + \sum_{i \in \mathbb{P}} (A_{i,j} + A_{j,i})$

Cost associated with keeping both:
$$\gamma_{i,j} \propto A_{i,j} + A_{j,i}$$

Cost of swapping
$$i$$
 with j : $\propto -\alpha_i + \beta_j - \gamma_{i,j}$

 $A_{i,i}$ matters to the objective function only if both i and j are selected

CBS Update (CBS-U)

Given a CBS-S solution \tilde{y} , the systematic weight update remains simple:

$$\min \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (w_i - \overline{w}_i) \ H_{i,j} (w_j - \overline{w}_j)$$
s. t. $w_i = 0 \quad \forall i \in [N] : \tilde{y}_i = 1$

$$w_i \in \mathbb{R} \quad \forall i \in [N] : \tilde{y}_i = 0$$

By abstracting pruned weights altogether, CBS-U becomes an unconstrained quadratic optimization problem with closed form solution (provided H^{-1}) \odot

In OBS, we update the unpruned weights for every weight that is pruned; in CBS, we update the unpruned weights once based on all pruned weights

Computational Experiments

We compare accuracy for different sparsity rates in varying models / datasets:

- MP: Prune smallest weights
- WF-S / WF: Singh & Alistarh
- CBS-S / CBS: Ours

Just prune weights

T	Pru	ine Selection	1
MP	WF-S	CBS-S	Improvement
93.93	93.92	93.91	-0.02
93.62	93.48	93.75	0.13
90.30	90.77	92.37	1.60
83.64	83.16	88.24	4.60
32.25	34.55	66.64	32.09
	93.93 93.62 90.30	MP WF-S 93.93 93.92 93.62 93.48 90.30 90.77 83.64 83.16	93.93 93.92 93.91 93.62 93.48 93.75 90.30 90.77 92.37 83.64 83.16 88.24

(Best accuracy)
(Second best)

Prune + update

Weight Update				
WF	CBS	Improvement		
94.02	93.96	-0.06		
93.77	93.98	0.21		
91.69	93.14	1.45		
85.54	88.92	3.38		
38.26	55.45	17.20		

Thank you!

See you in the poster session!

xin.yu@utah.edu

