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Designing Markov Decision Process

= MDP: A powerful tool for modeling various dynamic planning
problems

= financial investment, repair and maintenance, resource management,
robotic control, ...

= Externality

= Uncooperative agent with self interest.

= Detrimental to other individuals in the system or the system's overall
performance.




Regularized Markov Decision Process

= Optimal policy ;7 with policy entropy regularization

mz = argmax(n(- 15), Q:(s, ) — €71 ) Q(n(als))

Qc (s,a) =7r(s,a) +y - Eprisa)lVe ()]

Ve () = max(r(: 1), Q2(s:0) — €7 ) (r(als))

= () is a strictly convex and doubly differentiable function

- Example: KL divergence Y., Q(n(als)) = (m,logm ) 4 Bounded rationality
= we(als) = exp Q¢ (s, a) Xaexp Q¢ (s, a)




Question

= How to adaptively design the reward function/transition kernel in an MDP to
Induce a desirable outcome that fulfills the designer's objective?




Problem Formulation = argmax(r(- |s), Q(s,")) 4 — 6—12 Q(r(als))

= The original MDP design (OMD) = The regularized MDP design (RMD)
problem problem
OMD : max F'(6, 7"), RMD : max F'(6, ),
0ecX ocXx
st. 7 e I*(S, A, v, P(0),7(0)), st. =78, A, P(0),r(0)),
= OMD is non-singleton and ill-defined = Assume bounded rationality in the
when IT* has more than one element MDP agent by introducing entropy

_ _ _ regularization in the agent’s policy
= The optimal policy can be dis-

continuous concerning 6




Sub-optimality of the RMD

Given Ay, A, st A, > €7t (VUQ +(1+v)log (%))

We have,

Optimistic

max F (0, 7" (rg)) OMD

)
< max max F0,m)+ ArLp o0,

§  wE*(P(6).7(6)),
P()ER(AL)

Pessimistic

max (0, w¢ (rg)) OMD

> max min F0,7) — Dp L 0.
§ mEM*(P(6),7(6)), B
(- )ER(A})




General Framework for Solving RMD-Gradients

= Use KL divergence as the entropy regularization, we can obtain
Vogme(als) = € - me(als) - VgAe(s, a)

VoV (s) = Epz(15)[Vo Qe (s,))]
VoQi =T, (VoV + V. Vg InP)

vﬁ AZ(S) Cl) ~ VeQz(S: (1) _ VQV(:'*(S)

= 7 is a Bellman operator defined as follows,
75V (s,a) =7(s,a) + VEp(is.a;0) [V ()]

= The gradient of the designer's objective function F

VF—aF+ E L ad VoA
9—09 Gpnzp aﬁee

= p Is a reference distribution for sampling across the state space.




Benefits of regularization

= Well-defined problem
= Smoother landscape, Improved stability
* Improved exploration and robustness

= Easy gradient




RM D—Al g @) I"Ith m Total Reward as Design Obijective

fort =0to7 — 1do fort =0to7 —1do
for k =0to K —1do for k =0to X' — 1do
75 (]s) o exp (€QE(s, ) 7 (Js) o exp (€ (5. ) A,
VE(s) = e In (32, exp (eQE(s, a))) Calculate V., V, V.5 VF v, AF Ak VF
WJ/;““(S) = E.x [Vo,QX(s,a)] QML — T, (V.F)
Q! =T (V’“) VatQk’H Ty, 1 (Vo,VE + VFVg, In P)
Vo, QE =T8, . (Vo,VE+VEV,, InP) Qrtt =7, ,u(vk) )
end for . QF+1 = TS0, rutcAuVa, Acrya (VFE+ ViV, In P)
VGtAéK(S’ a) =V, QL (s,a) — Vo, V" (5) end for )
Vo, F =2 56, —I—EE <K [p L. é?(jﬁf -VgtA;K] Vo, F =Ep, [VE]
s — 0, 0 F b =0+ V0F
Reinitialize Q¥ = QF and Vg, , QY = V,y,QE Reinitialize QY = Q. Vo, ,Q! = V,Qf, and
end for v9t+1Q2 = VetQéK-

end for




Convergence Analysis

= Convergence of the Inner Loop

= After K inner iterations
K *
IVeQe — Vo Qéllo~2,(s,a)~co

< Y*KI1Q2 = Q¢lleo - (4€llVg QN g~2,(5,a)~00 + IVoPllg~2,5"~1,(5,a)~00)
+ Y*1IV9Q2 — Vo Qillo~2,(s,a)~oo

= Convergence of the Outer Loop

= Under proper regularization conditions, by appropriately setting the inner iteration number K and
the learning rate n, it holds that

l(67) — 1.(6) < 0(T~/?)
where [.(8) = —F(0,7:(6)).




Extentions

» e-Adaptive Strategy

=a smaller e: smoother optimization landscape, improved stabillity,
fewer inner iterations

*a larger e. more accurate in the design objective function
= We adjust € during the update (from small to large).




Experiments
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Thank youl!




