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Designing Markov Decision Process

▪ MDP: A powerful tool for modeling various dynamic planning 
problems

▪ financial investment, repair and maintenance, resource management, 
robotic control, …

▪ Externality

▪ Uncooperative agent with self interest.

▪ Detrimental to other individuals in the system or the system's overall 
performance.



Regularized Markov Decision Process

▪ Optimal policy 𝜋𝜖
∗ with policy entropy regularization

𝜋𝜖
∗ = argmax

𝜋
𝜋 ⋅ 𝑠 , 𝑄𝜖

∗ 𝑠,⋅ 𝒜 − 𝜖−1෍

a

Ω(𝜋(𝑎|𝑠))

𝑄𝜖
∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ⋅ 𝔼𝑃(⋅|𝑠,𝑎)[𝑉𝜖

∗(⋅)]

𝑉𝜖
∗ 𝑠 = max

𝜋
𝜋 ⋅ 𝑠 , 𝑄𝜖

∗ 𝑠,⋅ 𝒜 − 𝜖−1෍

a

Ω(𝜋(𝑎|𝑠))

▪ Ω is a strictly convex and doubly differentiable function

▪ Example: KL divergence σaΩ(𝜋(𝑎|𝑠)) = 𝜋, log 𝜋 𝒜

▪ 𝜋𝜖
∗(𝑎|𝑠) = exp 𝑄𝜖

∗ 𝑠, 𝑎 / σ𝑎 exp 𝑄𝜖
∗ 𝑠, 𝑎

Bounded rationality



Question

▪ How to adaptively design the reward function/transition kernel in an MDP to 
induce a desirable outcome that fulfills the designer's objective?



Problem Formulation

▪ The original MDP design (OMD) 
problem

▪ OMD is non-singleton and ill-defined 
when Π∗ has more than one element

▪ The optimal policy can be dis-
continuous concerning 𝜃

▪ The regularized MDP design (RMD) 
problem

▪ Assume bounded rationality in the 
MDP agent by introducing entropy 
regularization in the agent’s policy

𝜋𝜖
∗ = argmax

𝜋
𝜋 ⋅ 𝑠 , 𝑄𝜖

∗ 𝑠,⋅ 𝒜 − 𝜖−1෍

a

Ω(𝜋(𝑎|𝑠))



Sub-optimality of the RMD

Given Δ𝜋, Δ𝑟 s.t., Δ𝑟 ≥ 𝜖−1 𝛾𝑈Ω + 1 + 𝛾 log
2 𝒜

Δ𝜋

We have,
Optimistic 

OMD

Pessimistic 

OMD



General Framework for Solving RMD-Gradients 
▪ Use KL divergence as the entropy regularization, we can obtain

∇𝜃𝜋𝜖
∗(𝑎|𝑠) = 𝜖 ⋅ 𝜋𝜖

∗(𝑎|𝑠) ⋅ ∇𝜃𝐴𝜖
∗(𝑠, 𝑎)

∇𝜃𝑉𝜖
∗ 𝑠 = 𝔼𝜋𝜖∗(⋅|𝑠)[∇𝜃𝑄𝜖

∗ 𝑠,⋅ ]

∇𝜃𝑄𝜖
∗ = 𝒯∇𝜗𝑟,𝛾

𝜃 (∇𝜃𝑉𝜖
∗ + 𝑉𝜖

∗∇𝜃 ln 𝑃)

∇𝜗 𝐴𝜖
∗ 𝑠, 𝑎 = ∇𝜃𝑄𝜖

∗ 𝑠, 𝑎 − ∇𝜃𝑉𝜖
∗ 𝑠

▪ 𝒯 is a Bellman operator defined as follows,
𝒯𝑟,𝛾
𝜃 (𝑉)(𝑠, 𝑎) = 𝑟 𝑠, 𝑎 + 𝛾𝔼𝑃(⋅|𝑠,𝑎;𝜗)[𝑉 (⋅)]

▪ The gradient of the designer's objective function 𝐹

∇𝜃𝐹 =
𝜕𝐹

𝜕𝜃
+ 𝜖𝔼

𝜌𝜋𝜖
∗ 𝜌−1 ⋅

𝜕𝐹

𝜕𝜗
⋅ ∇𝜃𝐴𝜖

∗

▪ 𝜌 is a reference distribution for sampling across the state space.



Benefits of regularization

▪ Well-defined problem

▪ Smoother landscape, Improved stability

▪ Improved exploration and robustness

▪ Easy gradient



RMD-Algorithm Total Reward as Design Objective



Convergence Analysis

▪ Convergence of the Inner Loop

▪ After 𝐾 inner iterations

∇𝜃𝑄𝜖
𝐾 − ∇𝜃𝑄𝜖

∗
𝜃~2,(𝑠,𝑎)~∞

≤ 𝛾𝐾𝐾 𝑄𝜖
0 − 𝑄𝜖

∗
∞ ⋅ 4𝜖 ∇𝜃𝑄𝜖

∗
𝜃~2, 𝑠,𝑎 ~∞ + ∇𝜃𝑃 𝜃~2,s′~1, 𝑠,𝑎 ~∞

+ 𝛾𝐾 ∇𝜃𝑄𝜖
0 − ∇𝜃𝑄𝜖

∗
𝜃~2,(𝑠,𝑎)~∞

▪ Convergence of the Outer Loop 

▪ Under proper regularization conditions, by appropriately setting the inner iteration number 𝐾 and 
the learning rate 𝜂, it holds that

𝑙𝜖 𝜃𝑇 − 𝑙𝜖 𝜃∗ ≤ 𝑂(𝑇−1/2)

where 𝑙𝜖 𝜃 = −𝐹 𝜃, 𝜋𝜖
∗ 𝜃 .



Extentions

▪ 𝜖-Adaptive Strategy

▪ a smaller 𝜖: smoother optimization landscape, improved stability, 
fewer inner iterations 

▪ a larger 𝜖:  more accurate in the design objective function

▪ We adjust 𝜖 during the update (from small to large).



Experiments

Tax Design for Macroeconomic Model

▪ (a) different 𝜖

▪ (b) different inner loop 𝐾

▪ (c) adaptive strategy 𝜖

▪ (e) comparison with Bayesian 
optimization



Thank you!


