

Adaptive Model Design for Markov Decision Process

Siyu Chen^{*1}, Donglin Yang^{*1}, Jiayang Li², Senmiao Wang², Zhuoran Yang³ and Zhaoran Wang²

July, 2021

¹Tsinghua University ²Northwestern University ³Yale University

Designing Markov Decision Process

- MDP: A powerful tool for modeling various dynamic planning problems
 - financial investment, repair and maintenance, resource management, robotic control, ...
- Externality
 - Uncooperative agent with self interest.
 - Detrimental to other individuals in the system or the system's overall performance.

Regularized Markov Decision Process

- Optimal policy π_ϵ^* with policy entropy regularization

$$\pi_\epsilon^* = \underset{\pi}{\operatorname{argmax}} \langle \pi(\cdot | s), Q_\epsilon^*(s, \cdot) \rangle_{\mathcal{A}} - \epsilon^{-1} \sum_a \Omega(\pi(a | s))$$

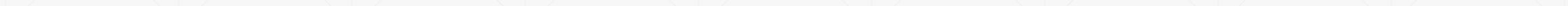
$$Q_\epsilon^*(s, a) = r(s, a) + \gamma \cdot \mathbb{E}_{P(\cdot | s, a)}[V_\epsilon^*(\cdot)]$$

$$V_\epsilon^*(s) = \underset{\pi}{\operatorname{max}} \langle \pi(\cdot | s), Q_\epsilon^*(s, \cdot) \rangle_{\mathcal{A}} - \epsilon^{-1} \sum_a \Omega(\pi(a | s))$$

- Ω is a strictly convex and doubly differentiable function
- Example: KL divergence $\sum_a \Omega(\pi(a | s)) = \langle \pi, \log \pi \rangle_{\mathcal{A}}$ Bounded rationality
- $\pi_\epsilon^*(a | s) = \exp Q_\epsilon^*(s, a) / \sum_a \exp Q_\epsilon^*(s, a)$

Question

- How to adaptively design the reward function/transition kernel in an MDP to induce a desirable outcome that fulfills the designer's objective?



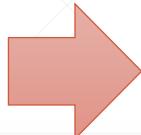
Problem Formulation

- The original MDP design (OMD) problem

$$\text{OMD : } \max_{\theta \in \mathcal{X}} F(\theta, \pi^*),$$

s.t. $\pi^* \in \Pi^*(\mathcal{S}, \mathcal{A}, \gamma, P(\theta), r(\theta))$,

- OMD is non-singleton and ill-defined when Π^* has more than one element
- The optimal policy can be discontinuous concerning θ



$$\pi_\epsilon^* = \operatorname*{argmax}_\pi \langle \pi(\cdot | s), Q_\epsilon^*(s, \cdot) \rangle_{\mathcal{A}} - \epsilon^{-1} \sum_a \Omega(\pi(a | s))$$

- The regularized MDP design (RMD) problem

$$\text{RMD : } \max_{\theta \in \mathcal{X}} F(\theta, \pi),$$

s.t. $\pi = \pi_\epsilon^*(\mathcal{S}, \mathcal{A}, \gamma, P(\theta), r(\theta))$,

- Assume bounded rationality in the MDP agent by introducing entropy regularization in the agent's policy

Sub-optimality of the RMD

Given Δ_π, Δ_r s.t., $\Delta_r \geq \epsilon^{-1} \left(\gamma U_\Omega + (1 + \gamma) \log \left(\frac{2|\mathcal{A}|}{\Delta_\pi} \right) \right)$

We have,

$$\max_{\theta} F(\theta, \pi_\epsilon^*(r_\theta))$$

Optimistic
OMD

$$\leq \max_{\theta} \max_{\substack{\pi \in \Pi^*(P(\theta), \hat{r}(\theta)), \\ \hat{r}(\cdot) \in \hat{R}(\Delta_r)}} F(\theta, \pi) + \Delta_\pi L_{F, \pi, 0},$$

$$\max_{\theta} F(\theta, \pi_\epsilon^*(r_\theta))$$

Pessimistic
OMD

$$\geq \max_{\theta} \min_{\substack{\pi \in \Pi^*(P(\theta), \hat{r}(\theta)), \\ \hat{r}(\cdot) \in \hat{R}(\Delta_r)}} F(\theta, \pi) - \Delta_\pi L_{F, \pi, 0}.$$

General Framework for Solving RMD-Gradients

- Use KL divergence as the entropy regularization, we can obtain

$$\nabla_{\theta} \pi_{\epsilon}^{*}(a|s) = \epsilon \cdot \pi_{\epsilon}^{*}(a|s) \cdot \nabla_{\theta} A_{\epsilon}^{*}(s, a)$$

$$\nabla_{\theta} V_{\epsilon}^{*}(s) = \mathbb{E}_{\pi_{\epsilon}^{*}(\cdot|s)}[\nabla_{\theta} Q_{\epsilon}^{*}(s, \cdot)]$$

$$\nabla_{\theta} Q_{\epsilon}^{*} = \mathcal{T}_{\nabla_{\vartheta} r, \gamma}^{\theta}(\nabla_{\theta} V_{\epsilon}^{*} + V_{\epsilon}^{*} \nabla_{\theta} \ln P)$$

$$\nabla_{\vartheta} A_{\epsilon}^{*}(s, a) = \nabla_{\theta} Q_{\epsilon}^{*}(s, a) - \nabla_{\theta} V_{\epsilon}^{*}(s)$$

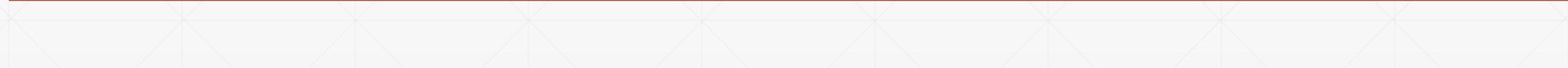
- \mathcal{T} is a Bellman operator defined as follows,

$$\mathcal{T}_{r, \gamma}^{\theta}(V)(s, a) = r(s, a) + \gamma \mathbb{E}_{P(\cdot|s, a; \vartheta)}[V(\cdot)]$$

- The gradient of the designer's objective function F

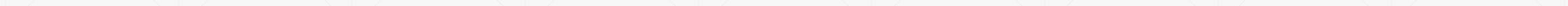
$$\nabla_{\theta} F = \frac{\partial F}{\partial \theta} + \epsilon \mathbb{E}_{\rho \pi_{\epsilon}^{*}} \left[\rho^{-1} \cdot \frac{\partial F}{\partial \vartheta} \cdot \nabla_{\theta} A_{\epsilon}^{*} \right]$$

- ρ is a reference distribution for sampling across the state space.



Benefits of regularization

- Well-defined problem
- Smoother landscape, Improved stability
- Improved exploration and robustness
- Easy gradient



RMD-Algorithm

```

for  $t = 0$  to  $T - 1$  do
  for  $k = 0$  to  $K - 1$  do
     $\pi_\epsilon^k(\cdot|s) \propto \exp(\epsilon Q_\epsilon^k(s, \cdot))$ 
     $V_\epsilon^k(s) = \epsilon^{-1} \ln(\sum_a \exp(\epsilon Q_\epsilon^k(s, a)))$ 
     $\nabla_{\theta_t} V_\epsilon^k(s) = \mathbb{E}_{\pi_\epsilon^K} [\nabla_{\theta_t} Q_\epsilon^K(s, a)]$ 
     $Q_\epsilon^{k+1} = \mathcal{T}_{r, \gamma}^\theta(V_\epsilon^k)$ 
     $\nabla_{\theta_t} Q_\epsilon^{k+1} = \mathcal{T}_{\nabla_{\theta_t} r, \gamma}^\theta(\nabla_{\theta_t} V_\epsilon^k + V_\epsilon^k \nabla_{\theta_t} \ln P)$ 
  end for
   $\nabla_{\theta_t} A_\epsilon^K(s, a) = \nabla_{\theta_t} Q_\epsilon^K(s, a) - \nabla_{\theta_t} V_\epsilon^K(s)$ 
   $\nabla_{\theta_t} F = \frac{\partial F}{\partial \theta_t} + \epsilon \mathbb{E}_{\rho^{\pi_\epsilon^K}} \left[ \rho^{-1} \cdot \frac{\partial F}{\partial \pi_\epsilon^K} \cdot \nabla_{\theta_t} A_\epsilon^K \right]$ 
   $\theta_{t+1} = \theta_t + \eta \nabla_{\theta_t} F$ 
  Reinitialize  $Q_\epsilon^0 = Q_\epsilon^K$  and  $\nabla_{\theta_{t+1}} Q_\epsilon^0 = \nabla_{\theta_t} Q_\epsilon^K$ 
end for

```

Total Reward as Design Objective

```

for  $t = 0$  to  $T - 1$  do
  for  $k = 0$  to  $K - 1$  do
     $\pi_\epsilon^k(\cdot|s) \propto \exp(\epsilon Q_\epsilon^k(s, \cdot))$ 
    Calculate  $V_\epsilon^k, \nabla_{\theta_t} V_\epsilon^k, V_u^k, \nabla_{\theta_t} A_\epsilon^k, A_u^k, \tilde{V}^k$ 
     $Q_\epsilon^{k+1} = \mathcal{T}_{r, \gamma}(V_\epsilon^k)$ 
     $\nabla_{\theta_t} Q_\epsilon^{k+1} = \mathcal{T}_{\nabla_{\theta_t} r, \gamma}(\nabla_{\theta_t} V_\epsilon^k + V_\epsilon^k \nabla_{\theta_t} \ln P)$ 
     $Q_u^{k+1} = \mathcal{T}_{r_u, \gamma_u}(V_u^k)$ 
     $\tilde{Q}^{k+1} = \mathcal{T}_{\nabla_{\theta_t} r_u + \epsilon A_u \nabla_{\theta_t} A_\epsilon, \gamma_u}(\tilde{V}^k + V_u^k \nabla_{\theta_t} \ln P)$ 
  end for
   $\nabla_{\theta_t} F = \mathbb{E}_{\mathcal{D}_0}[\tilde{V}^K]$ 
   $\theta_{t+1} = \theta_t + \eta \nabla_{\theta_t} F$ 
  Reinitialize  $Q_\epsilon^0 = Q_\epsilon^K, \nabla_{\theta_{t+1}} Q_\epsilon^0 = \nabla_{\theta_t} Q_\epsilon^K$ , and
   $\nabla_{\theta_{t+1}} Q_\epsilon^0 = \nabla_{\theta_t} Q_\epsilon^K$ .
end for

```

Convergence Analysis

- Convergence of the Inner Loop

- After K inner iterations

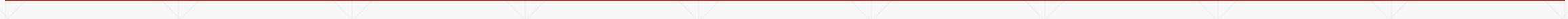
$$\begin{aligned} & \|\nabla_{\theta} Q_{\epsilon}^K - \nabla_{\theta} Q_{\epsilon}^*\|_{\theta \sim 2, (s, a) \sim \infty} \\ & \leq \gamma^K K \|Q_{\epsilon}^0 - Q_{\epsilon}^*\|_{\infty} \cdot \left(4\epsilon \|\nabla_{\theta} Q_{\epsilon}^*\|_{\theta \sim 2, (s, a) \sim \infty} + \|\nabla_{\theta} P\|_{\theta \sim 2, s' \sim 1, (s, a) \sim \infty} \right) \\ & \quad + \gamma^K \|\nabla_{\theta} Q_{\epsilon}^0 - \nabla_{\theta} Q_{\epsilon}^*\|_{\theta \sim 2, (s, a) \sim \infty} \end{aligned}$$

- Convergence of the Outer Loop

- Under proper regularization conditions, by appropriately setting the inner iteration number K and the learning rate η , it holds that

$$l_{\epsilon}(\theta_T) - l_{\epsilon}(\theta^*) \leq O(T^{-1/2})$$

where $l_{\epsilon}(\theta) = -F(\theta, \pi_{\epsilon}^*(\theta))$.



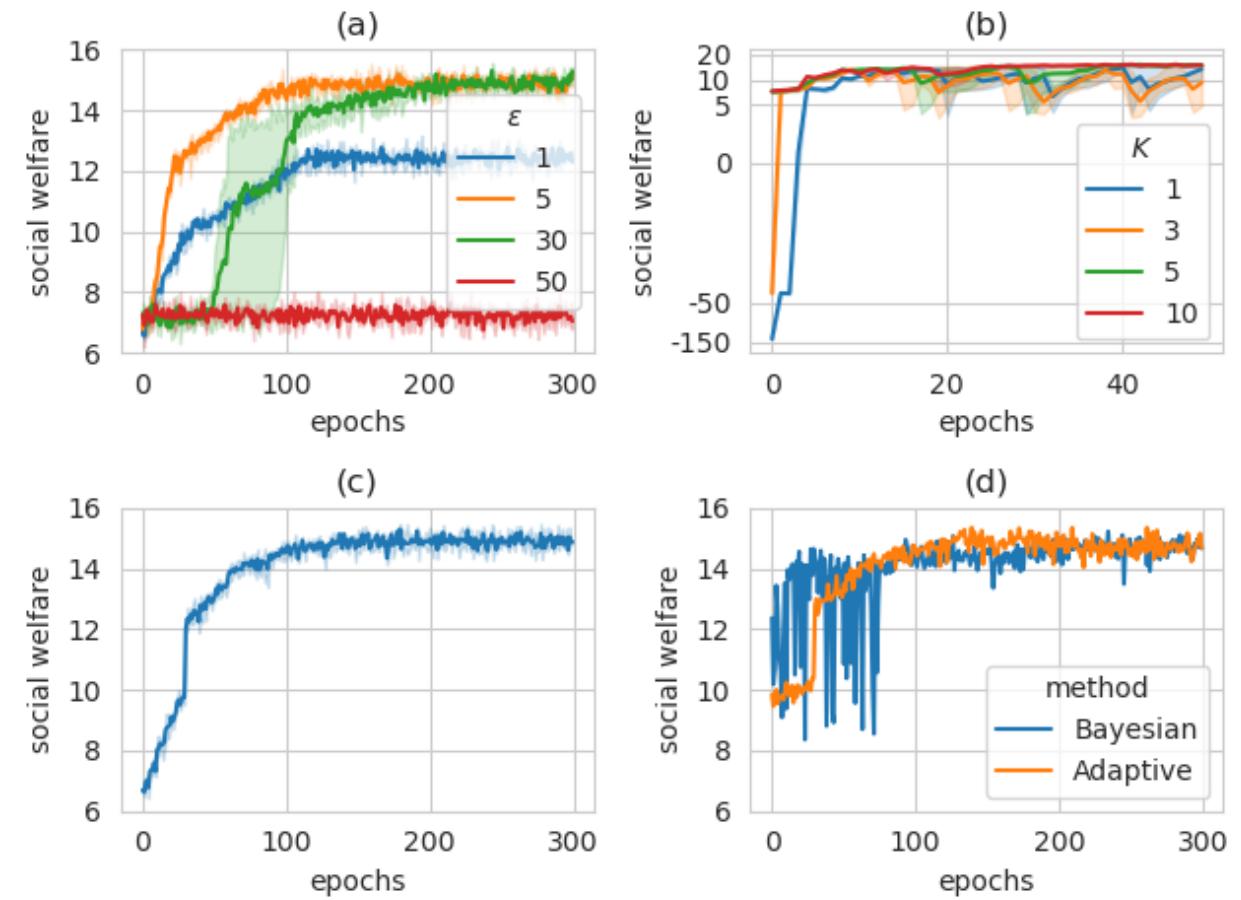
Extentions

- ϵ -Adaptive Strategy
 - a smaller ϵ : smoother optimization landscape, improved stability, fewer inner iterations
 - a larger ϵ : more accurate in the design objective function
 - We adjust ϵ during the update (from small to large).

Experiments

Tax Design for Macroeconomic Model

- (a) different ϵ
- (b) different inner loop K
- (c) adaptive strategy ϵ
- (e) comparison with Bayesian optimization



Thank you!

