AGNAS: Attention-Guided Micro- and Macro-Architecture Search

Zihao Sun, Yu Hu, Shun Lu, Longxing Yang, Jillin Mei, Yinhe Han, Xiaowei Li

Micro Search: Architecture parameters == Operation strength [1]

Micro Search

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t.
$$w^*(\alpha) = \arg\min_{w} \mathcal{L}_{train}(w, \alpha)$$

- Micro Search: Architecture parameters == Operation strength [1]

Micro Search

$$\min_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t. $w^*(\alpha) = \arg\min_{w} \mathcal{L}_{train}(w, \alpha)$

Macro Search

$$w^*(a) = \arg\min_{w} \mathbb{E}_{a \sim \mathcal{A}} \mathcal{L}_{train}(w, a)$$
$$a^* = \arg\max_{a \sim \mathcal{A}} ACC_{val}(a, w^*(a))$$

We ask for:

Search paradigm of accurate and end-to-end?

We ask for:

Search paradigm of accurate and end-to-end?

Inspired by:

Attention

We ask for:

Search paradigm of accurate and end-to-end?

Inspired by:

Attention + NAS = AGNAS

We ask for:

Search paradigm of accurate and end-to-end?

Micro Search

Macro Search

Overview of AGNAS

Attention Module

Pre-Processing

Attention-Computing

Architecture-Evaluation

Attention Module

Pre-Processing

Attention-Computing

Architecture-Evaluation

Pre-Processing

Attention-Computing

Architecture-Evaluation

Theoretical Analysis:

F-Principle

 The Global Average Pooling (GAP) is the special case of Two-Dimensional Discrete Cosine Transform (2D-DCT)

$$\begin{split} f_{0,0}^{2d} &= \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} x_{i,j}^{2d} cos(\frac{0}{H}(i+\frac{1}{2})) cos(\frac{0}{W}(j+\frac{1}{2})) \\ &= \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} x_{i,j}^{2d} = GAP(x^{2d})HW \end{split}$$

low-frequency components help to improve the generalization [1]

Experimental Results:

DARTS search space

Methods	Test Err.(%)	Params(M)	Search Cost (GPU-days)	Search Algorithm
NASNet-A (Zoph et al., 2018)	2.65	3.3	1800	RL
AmoebaNet-A (Real et al., 2019)	3.34 ± 0.06	3.2	3150	EA
AmoebaNet-B (Real et al., 2019)	$2.55{\pm}0.05$	2.8	3150	EA
PNAS (Liu et al., 2018a)	3.41 ± 0.09	3.2	225	SMBO
ENAS (Pham et al., 2018)	2.89	4.6	0.5	RL
DARTS (1st order) (Liu et al., 2018c)	3.00 ± 0.14	3.3	1.5	Gradient
DARTS (2nd order) (Liu et al., 2018c)	2.76 ± 0.09	3.3	4	Gradient
SNAS (Xie et al., 2018)	$2.85{\pm}0.02$	2.8	1.5	Gradient
GDAS (Dong & Yang, 2019)	2.93	3.4	0.21	Gradient
BayesNAS (Zhou et al., 2019)	$2.81 {\pm} 0.04$	3.4	0.2	Gradient
Robust-DARTS (Zela et al., 2020)	$2.95{\pm}0.21$	N/A	1.6	Gradient
PC-DARTS (Xu et al., 2019a)	2.57 ± 0.07	3.6	0.1	Gradient
DATA (Chang et al., 2019)	2.59	3.4	1	Gradient
SGAS(Cri.1 avg.) (Li et al., 2020)	2.66 ± 0.24	3.7	0.25	Gradient
SDARTS-ADV (Chen & Hsieh, 2020)	2.61 ± 0.02	3.3	1.3	Gradient
DARTS+PT (Wang et al., 2021)	$2.61{\pm}0.08$	3.0	0.8	Gradient
AGNAS (avg.)	2.53 ± 0.003	3.6	0.4	Gradient
AGNAS (best)	2.46	3.6	0.4	Gradient

Experimental Results:

ProxylessNAS search space

Methods	Test Err. (%)		Params	Search Cost	Search
112011045	Top-1	Top-5	(M)	(GPU-days)	Algorithm
MnasNet (Tan et al., 2019)	26	8.2	4.2	2000	RL
NASNet (Zoph et al., 2018)	26.0	8.4	5.3	1800	RL
AmoebaNet (Real et al., 2019).	24.3	7.6	6.4	3150	EA
PNAS (Liu et al., 2018a)	25.8	8.1	5.1	225	SMBO
FBNet-C (Wu et al., 2019)	25.1	7.9	5.5	9	Gradient
ProxylessNAS(GPU) (Cai et al., 2018)	24.9	7.5	7.1	8.3	Gradient
SPOS (Guo et al., 2020)	26.0	8.4	5.3	11 [‡]	Evolution
FairNAS-A (Chu et al., 2021)	24.66	7.8	4.6	16^{\ddagger}	Evolution
GreedyNAS-C (You et al., 2020)	23.8	7.5	4.7	8 [‡]	Evolution
RLNAS (Zhang et al., 2021)	24.4	7.4	5.3	N/A	Evolution
AGNAS	23.4	6.8	6.7	3.3	Gradient

Experimental Results:

ProxylessNAS search space

Methods	Test Err. (%)		Params	Search Cost	Search
	Top-1	Top-5	(M)	(GPU-days)	Algorithm
MnasNet (Tan et al., 2019)	26	8.2	4.2	2000	RL
NASNet (Zoph et al., 2018)	26.0	8.4	5.3	1800	RL
AmoebaNet (Real et al., 2019).	24.3	7.6	6.4	3150	EA
PNAS (Liu et al., 2018a)	25.8	8.1	5.1	225	SMBO
FBNet-C (Wu et al., 2019)	25.1	7.9	5.5	9	Gradient
ProxylessNAS(GPU) (Cai et al., 2018)	24.9	7.5	7.1	8.3	Gradient
SPOS (Guo et al., 2020)	26.0	8.4	5.3	11^{\ddagger}	Evolution
FairNAS-A (Chu et al., 2021)	24.66	7.8	4.6	16^{\ddagger}	Evolution
GreedyNAS-C (You et al., 2020)	23.8	7.5	4.7	8 [‡]	Evolution
RLNAS (Zhang et al., 2021)	24.4	7.4	5.3	N/A	Evolution
AGNAS	23.4	6.8	6.7	3.3	Gradient

FairNAS-A (Chu et al., 2021) 24.66 7.8 4.6 16[‡] Evolution GreedyNAS-C (You et al., 2020) 23.8 7.5 4.7 8[‡] Evolution RLNAS (Zhang et al., 2021) 24.4 7.4 5.3 N/A Evolution AGNAS 23.4 6.8 6.7 3.3 Gradient

• NAS-Bench-201 search space

Methods	CIFAR-10		CIFA	R-100	ImageNet-16-120		
Withing	validation	test	validation	test	validation	test	
Optimal	91.61	94.37	73.49	73.51	46.77	47.31	
RSPS	80.42 ± 3.58	84.07±3.61	52.12±5.55	52.31±5.77	27.22±3.24	26.28±3.09	
DARTS	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00	
GDAS	89.89 ± 0.08	93.61 ± 0.09	71.34 ± 0.04	70.70 ± 0.30	41.59 ± 1.33	41.71 ± 0.98	
SETN	84.04 ± 0.28	87.64 ± 0.00	58.86 ± 0.06	59.05 ± 0.24	33.06 ± 0.02	32.52 ± 0.21	
ENAS	37.51 ± 3.19	53.89 ± 0.58	$13.37{\pm}2.35$	13.96 ± 2.33	15.06 ± 1.95	14.84 ± 2.10	
AGNAS	91.25±0.019	94.05±0.059	72.4 ± 0.382	72.41 ± 0.061	45.5±0.003	45.98±0.457	

Discussion:

Attention Weight vs. Architecture Parameter

Take the second edge in the first cell as example,

Attention weights > Architectural parameters

<u></u>	Discretization Accuracy	Attention Weights	Operation	Alpha Weights	Discretization Accuracy	
	85.79	199663	none	0.452	87.14	
	84.62	200717	max_pool_3x3	0.038	86.97	
	84.16	199431	avg_pool_3x3	0.034	85.89	
	84.00	199984	skip_connect	0.061	85.75	
	83.58	201223	sep_conv_3x3	0.124	85.63	
	83.07	200489	sep_conv_5x5	0.120	85.55	
	82.81	199193	dil_conv_3x3	0.091	85.53	
	82.28	199547	dil_conv_5x5	0.080	85.45	
	AGNAS Kendall = 0.71			DARTS Kendall = 0		

(c) The ranking of attention weights or alpha weights against discretization accuracy.

Kendall τ : AGNAS > DARTS

Conclusion:

- We propose a novel paradigm that leverages the attention mechanism to guide micro- and macro-architecture search.
- AGNAS can truly reflect the operational importance and conduct endto-end search.
- AGNAS significantly outperforms state-of-the-art approaches on various search space.

Thanks for your attention Q&A

AGNAS: Attention-Guided Micro- and Macro-Architecture Search

