
Short-Term Plasticity Neurons 
Learning to Learn and Forget

Hector Garcia Rodriguez Qinghai Guo Timoleon Moraitis



Motivation: Biological vs Artificial Neural Networks
Biological NNsArtificial NNs

• Abstract inspiration from 
biology.



Motivation: Biological vs Artificial Neural Networks
Biological NNsArtificial NNs

• Abstract inspiration from 
biology.

• Limitations compared to 
animals and humans.

1. Long training, big data

2. Difficulty in dynamic 
environments

3. Ad hoc, task-specific 
architectures

4. High computational 
demands



Motivation: Biological vs Artificial Neural Networks
Biological NNsArtificial NNs

• Abstract inspiration from 
biology.

• Limitations compared to 
animals and humans.

1. Long training, big data

2. Difficulty in dynamic 
environments

3. Ad hoc, task-specific 
architectures

4. High computational 
demands

• Unique mechanisms, missing 
from ANNs.

• The mechanisms are closely 
related to the advantages.

1. Complex synaptic plasticity for 
learning

2. Dynamically changing chemical 
concentrations

3. Shared principles across brain 
areas and species

4. Extreme energy 
efficiency in neurons and
synapses



Motivation: Biological vs Artificial Neural Networks
Biological NNsArtificial NNs

• Abstract inspiration from 
biology.

• Limitations compared to 
animals and humans.

1. Long training, big data

2. Difficulty in dynamic
environments

3. Ad hoc, task-specific
architectures

4. High computational 
demands

• Unique mechanisms, missing 
from ANNs.

• The mechanisms are closely 
related to the advantages.

1. Complex synaptic plasticity for 
learning

2. Dynamically changing chemical 
concentrations

3. Shared principles across brain 
areas and species

4. Extreme energy 
efficiency in neurons and
synapses



Background: Neuromorphic Computing
Conversion of biophysical operations into (hardware) models of computation.



Background: Neuromorphic Computing

Ambrogio et al., 2018

Conversion of biophysical operations into (hardware) models of computation.

Energy efficiency through physics of electronics.



Background: Neuromorphic Computing

Ambrogio et al., 2018

Conversion of biophysical operations into (hardware) models of computation.

Anwani & Rajendran, 2019

Energy efficiency through physics of electronics.

The field has focused on Spiking Neural Networks.



Background: Neuromorphic Computing

Ambrogio et al., 2018

Conversion of biophysical operations into (hardware) models of computation.

Anwani & Rajendran, 2019

Energy efficiency through physics of electronics.

The field has focused on Spiking Neural Networks.

➢ We also used a neuromorphic mechanism (STP).
But:
➢ We improved both efficiency and proficiency.
➢ We showed advantages beyond SNNs, in state-of-the-art ML.
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Background: Plasticity and Short-Term Plasticity

• E.g. Hebbian plasticity, “Fast Weights”

• Local learning in the brain

• Short-term plasticity (STP)

• Decaying effect of weight updates

➢ Hebbian STP: models certain dynamic environments optimally, in theory (Moraitis et al. 2020).



Background concepts

“Short-Term Plasticity Neuron” 
(this work)
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The Short-Term Plasticity Neuron (STPN)

Recurrent synaptic states
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The Short-Term Plasticity Neuron (STPN)



STPN-F (feed-forward) …STPN-L? (LSTM-like)STPN-R (recurrent)

The Short-Term Plasticity Neuron (STPN)



The Short-Term Plasticity Neuron (STPN)
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The Short-Term Plasticity Neuron (STPN)

learning forgetting

STP on F 
(and G):

BPTT on
γ and λ

(and W):

learning to learn                                      and forget



Experiments: Tasks
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• Reinforcement Learning
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Experiments: Tasks

Associative Retrieval Task Maze exploration

input
c9 k8 j3 f1 ?? k

target
8

Miconi et al., 2018Ba et al., 2016

• Memorisation and retrieval of 
associations presented sequentially

• Meta-learning to:

• Adapt to variations in the maze

• Change between exploration and exploitation

• Previously used to test models with fast weights



Atari Pong MuJoCo Inverted Pendulum
Todorov et al., 2012Bellemare et al., 2013

Experiments: Tasks

• More complex tasks, previously not tested for models with fast weights

• RNNs part of competitive solutions



Experiments: Metrics

We evaluated:

• Proficiency (Accuracy, reward)

• Efficiency (1/energy)

• Power consumption of weighting operations

• Assuming analog biological 
implementation/neuromorphic hardware

Amant et al., 2014

Input
(voltage)

Synaptic efficacy
(conductance)

Electric power
consumption



Experiments: Baselines
We compared STPN with:

• Fast weights SOTA models

• Fast weights RNN (Ba et al., 2016)

• Differentiable plasticity (Miconi et al., 2019)

• Commonly used NNs

• LSTM

• RNN

• MLP

Ba et al., 2016

LSTM Illustration by Olah C., 2015
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• STPN is also significantly more energy-efficient, up to 10x
• Than all baselines

• In all tasks
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• Power consumption remains low even as proficiency increases.

• Despite no explicit optimization of efficiency.

• Learning to depress irrelevant synapses improves both.

Results: Efficiency



• STPN: a new recurrent model founded on ML 
theory and neuroscience

• Trainable STP through recurrency within each 
synapse

• Meta-learning to learn and forget through BPTT + 
STP

• Highest accuracy and reward

• In multiple tasks

• Than SOTA recurrent and plastic models

• A new method for energy efficiency in 
neuromorphic hardware

• Increases importance of STP’s role in biology

• Learning to forget might tackle catastrophic 
forgetting

Summary


